\left\{ \begin{array} { l } { 2 x + y = 3 } \\ { x + y = 5 } \end{array} \right\}
x, y uchun yechish
x=-2
y=7
Grafik
Baham ko'rish
Klipbordga nusxa olish
2x+y=3,x+y=5
Almashtirishdan foydalanib tenglamalar juftligini yechish uchun, avval o'zgaruvchan qiymatlardan biri uchun tenglamani yeching. So'ngra ana shu o'zgaruvchan natijani boshqa tenglama bilan almashtiring.
2x+y=3
Tenglamalardan birini tanlang va teng belgisining chap tomonidagi x ni izolyatsiyalash orqali x ni hisoblang.
2x=-y+3
Tenglamaning ikkala tarafidan y ni ayirish.
x=\frac{1}{2}\left(-y+3\right)
Ikki tarafini 2 ga bo‘ling.
x=-\frac{1}{2}y+\frac{3}{2}
\frac{1}{2} ni -y+3 marotabaga ko'paytirish.
-\frac{1}{2}y+\frac{3}{2}+y=5
\frac{-y+3}{2} ni x uchun boshqa tenglamada almashtirish, x+y=5.
\frac{1}{2}y+\frac{3}{2}=5
-\frac{y}{2} ni y ga qo'shish.
\frac{1}{2}y=\frac{7}{2}
Tenglamaning ikkala tarafidan \frac{3}{2} ni ayirish.
y=7
Ikkala tarafini 2 ga ko‘paytiring.
x=-\frac{1}{2}\times 7+\frac{3}{2}
7 ni y uchun x=-\frac{1}{2}y+\frac{3}{2} da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz x ni bevosita yecha olasiz.
x=\frac{-7+3}{2}
-\frac{1}{2} ni 7 marotabaga ko'paytirish.
x=-2
Umumiy maxrajni topib va hisoblovchini qo'shish orqali \frac{3}{2} ni -\frac{7}{2} ga qo'shing. So'ngra agar imkoni bo'lsa kasrni eng kam shartga qisqartiring.
x=-2,y=7
Tizim hal qilindi.
2x+y=3,x+y=5
Tenglamalar standart shaklda ko'rsatilsin so'ng tenglamalar tizimini yechish uchun matritsalardan foydalanilsin.
\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\5\end{matrix}\right)
Tenglamalarni matritsa shaklida yozish.
inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}3\\5\end{matrix}\right)
\left(\begin{matrix}2&1\\1&1\end{matrix}\right) teskari matritsasi bilan tenglamani chapdan ko‘paytiring.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}3\\5\end{matrix}\right)
Matritsaning ko‘paytmasi va teskarisi o‘zaro teng matristsadir.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}3\\5\end{matrix}\right)
Tenglik belgisining chap tomonida matritsalarni koʻpaytiring.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-1}&-\frac{1}{2-1}\\-\frac{1}{2-1}&\frac{2}{2-1}\end{matrix}\right)\left(\begin{matrix}3\\5\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrix uchun, teskari matritsa \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), shuning uchun matritsa tenglamasini matritsani ko‘paytirish masalasi sifatida qayta yozish mumkin.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}3\\5\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3-5\\-3+2\times 5\end{matrix}\right)
Matritsalarni ko'paytirish.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-2\\7\end{matrix}\right)
Arifmetik hisobni amalga oshirish.
x=-2,y=7
x va y matritsa elementlarini chiqarib olish.
2x+y=3,x+y=5
Chiqarib tashlash bilan yechim hosil qilish uchun, o'zgartmalarning koeffitsienti ikkala tenglamada bir xil bo'lib o'zgaruvchan qiymat birining boshqasidan ayirilganda, bekor qilishi lozim.
2x-x+y-y=3-5
Har bir teng belgisining yon tarafidan o'sxhash shartlarini ayirish orqali 2x+y=3 dan x+y=5 ni ayirish.
2x-x=3-5
y ni -y ga qo'shish. y va -y shartlari bekor qilinadi va faqatgina yechimi bor bitta o'zgaruvchan qiymat bilan tenglamani tark etadi.
x=3-5
2x ni -x ga qo'shish.
x=-2
3 ni -5 ga qo'shish.
-2+y=5
-2 ni x uchun x+y=5 da almashtirish. Natija tenglama faqat bitta o'zgaruvchi qiymatga ega bo'lganligi bois siz y ni bevosita yecha olasiz.
y=7
2 ni tenglamaning ikkala tarafiga qo'shish.
x=-2,y=7
Tizim hal qilindi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}