Asosiy tarkibga oʻtish
λ uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\lambda ^{2}+1-2\lambda +\lambda ^{2}=3
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(1-\lambda \right)^{2} kengaytirilishi uchun ishlating.
2\lambda ^{2}+1-2\lambda =3
2\lambda ^{2} ni olish uchun \lambda ^{2} va \lambda ^{2} ni birlashtirish.
2\lambda ^{2}+1-2\lambda -3=0
Ikkala tarafdan 3 ni ayirish.
2\lambda ^{2}-2-2\lambda =0
-2 olish uchun 1 dan 3 ni ayirish.
2\lambda ^{2}-2\lambda -2=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
\lambda =\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 2\left(-2\right)}}{2\times 2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 2 ni a, -2 ni b va -2 ni c bilan almashtiring.
\lambda =\frac{-\left(-2\right)±\sqrt{4-4\times 2\left(-2\right)}}{2\times 2}
-2 kvadratini chiqarish.
\lambda =\frac{-\left(-2\right)±\sqrt{4-8\left(-2\right)}}{2\times 2}
-4 ni 2 marotabaga ko'paytirish.
\lambda =\frac{-\left(-2\right)±\sqrt{4+16}}{2\times 2}
-8 ni -2 marotabaga ko'paytirish.
\lambda =\frac{-\left(-2\right)±\sqrt{20}}{2\times 2}
4 ni 16 ga qo'shish.
\lambda =\frac{-\left(-2\right)±2\sqrt{5}}{2\times 2}
20 ning kvadrat ildizini chiqarish.
\lambda =\frac{2±2\sqrt{5}}{2\times 2}
-2 ning teskarisi 2 ga teng.
\lambda =\frac{2±2\sqrt{5}}{4}
2 ni 2 marotabaga ko'paytirish.
\lambda =\frac{2\sqrt{5}+2}{4}
\lambda =\frac{2±2\sqrt{5}}{4} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{5} ga qo'shish.
\lambda =\frac{\sqrt{5}+1}{2}
2+2\sqrt{5} ni 4 ga bo'lish.
\lambda =\frac{2-2\sqrt{5}}{4}
\lambda =\frac{2±2\sqrt{5}}{4} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{5} ni ayirish.
\lambda =\frac{1-\sqrt{5}}{2}
2-2\sqrt{5} ni 4 ga bo'lish.
\lambda =\frac{\sqrt{5}+1}{2} \lambda =\frac{1-\sqrt{5}}{2}
Tenglama yechildi.
\lambda ^{2}+1-2\lambda +\lambda ^{2}=3
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(1-\lambda \right)^{2} kengaytirilishi uchun ishlating.
2\lambda ^{2}+1-2\lambda =3
2\lambda ^{2} ni olish uchun \lambda ^{2} va \lambda ^{2} ni birlashtirish.
2\lambda ^{2}-2\lambda =3-1
Ikkala tarafdan 1 ni ayirish.
2\lambda ^{2}-2\lambda =2
2 olish uchun 3 dan 1 ni ayirish.
\frac{2\lambda ^{2}-2\lambda }{2}=\frac{2}{2}
Ikki tarafini 2 ga bo‘ling.
\lambda ^{2}+\left(-\frac{2}{2}\right)\lambda =\frac{2}{2}
2 ga bo'lish 2 ga ko'paytirishni bekor qiladi.
\lambda ^{2}-\lambda =\frac{2}{2}
-2 ni 2 ga bo'lish.
\lambda ^{2}-\lambda =1
2 ni 2 ga bo'lish.
\lambda ^{2}-\lambda +\left(-\frac{1}{2}\right)^{2}=1+\left(-\frac{1}{2}\right)^{2}
-1 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{1}{2} olish uchun. Keyin, -\frac{1}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
\lambda ^{2}-\lambda +\frac{1}{4}=1+\frac{1}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{1}{2} kvadratini chiqarish.
\lambda ^{2}-\lambda +\frac{1}{4}=\frac{5}{4}
1 ni \frac{1}{4} ga qo'shish.
\left(\lambda -\frac{1}{2}\right)^{2}=\frac{5}{4}
\lambda ^{2}-\lambda +\frac{1}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(\lambda -\frac{1}{2}\right)^{2}}=\sqrt{\frac{5}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\lambda -\frac{1}{2}=\frac{\sqrt{5}}{2} \lambda -\frac{1}{2}=-\frac{\sqrt{5}}{2}
Qisqartirish.
\lambda =\frac{\sqrt{5}+1}{2} \lambda =\frac{1-\sqrt{5}}{2}
\frac{1}{2} ni tenglamaning ikkala tarafiga qo'shish.