Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int 2x+2-1-2x^{2}-2x^{2}+x\mathrm{d}x
Avval noaniq integralni baholang.
\int 2x\mathrm{d}x+\int 2\mathrm{d}x+\int -1\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int -2x^{2}\mathrm{d}x+\int x\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
2\int x\mathrm{d}x+\int 2\mathrm{d}x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
x^{2}+\int 2\mathrm{d}x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring. 2 ni \frac{x^{2}}{2} marotabaga ko'paytirish.
x^{2}+2x+\int -1\mathrm{d}x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, 2 integralini toping.
x^{2}+2x-x-2\int x^{2}\mathrm{d}x-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, -1 integralini toping.
x^{2}+2x-x-\frac{2x^{3}}{3}-2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring. -2 ni \frac{x^{3}}{3} marotabaga ko'paytirish.
x^{2}+2x-x-\frac{2x^{3}}{3}-\frac{2x^{3}}{3}+\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring. -2 ni \frac{x^{3}}{3} marotabaga ko'paytirish.
x^{2}+2x-x-\frac{2x^{3}}{3}-\frac{2x^{3}}{3}+\frac{x^{2}}{2}
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring.
\frac{3x^{2}}{2}+x-\frac{4x^{3}}{3}
Qisqartirish.
\frac{3}{2}\times 1^{2}+1-\frac{4}{3}\times 1^{3}-\left(\frac{3}{2}\times 0^{2}+0-\frac{4}{3}\times 0^{3}\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{7}{6}
Qisqartirish.