Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Baham ko'rish

\int 5x+8585+68e^{15}\mathrm{d}x
Avval noaniq integralni baholang.
\int 5x\mathrm{d}x+\int 8585\mathrm{d}x+\int 68e^{15}\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
5\int x\mathrm{d}x+\int 8585\mathrm{d}x+68\int e^{15}\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{5x^{2}}{2}+\int 8585\mathrm{d}x+68\int e^{15}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring. 5 ni \frac{x^{2}}{2} marotabaga ko'paytirish.
\frac{5x^{2}}{2}+8585x+68\int e^{15}\mathrm{d}x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, 8585 integralini toping.
\frac{5x^{2}}{2}+8585x+68e^{15}x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, e^{15} integralini toping.
\frac{5}{2}\times 45^{2}+8585\times 45+68e^{15}\times 45-\left(\frac{5}{2}\left(-9\right)^{2}+8585\left(-9\right)+68e^{15}\left(-9\right)\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
468450+3672e^{15}
Qisqartirish.