Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int x\left(x^{3}+15x^{2}+75x+125\right)\mathrm{d}x
\left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} binom teoremasini \left(x+5\right)^{3} kengaytirilishi uchun ishlating.
\int x^{4}+15x^{3}+75x^{2}+125x\mathrm{d}x
x ga x^{3}+15x^{2}+75x+125 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\int x^{4}\mathrm{d}x+\int 15x^{3}\mathrm{d}x+\int 75x^{2}\mathrm{d}x+\int 125x\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
\int x^{4}\mathrm{d}x+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{5}}{5}+15\int x^{3}\mathrm{d}x+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{4}\mathrm{d}x integralni \frac{x^{5}}{5} bilan almashtiring.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+75\int x^{2}\mathrm{d}x+125\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{3}\mathrm{d}x integralni \frac{x^{4}}{4} bilan almashtiring. 15 ni \frac{x^{4}}{4} marotabaga ko'paytirish.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+125\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring. 75 ni \frac{x^{3}}{3} marotabaga ko'paytirish.
\frac{x^{5}}{5}+\frac{15x^{4}}{4}+25x^{3}+\frac{125x^{2}}{2}
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring. 125 ni \frac{x^{2}}{2} marotabaga ko'paytirish.
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}
Qisqartirish.
\frac{125x^{2}}{2}+25x^{3}+\frac{15x^{4}}{4}+\frac{x^{5}}{5}+С
Агар F\left(x\right)f\left(x\right) ning dastlabki holati boʻlsa, u holatda f\left(x\right) ning barcha dastlabki holatlari toʻplami F\left(x\right)+C tarafidan belgilanadi. Shu sababli natijaga C\in \mathrm{R} integrallash konstantasini qoʻshing.