Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int x^{5}+2x^{4}-5x^{2}\mathrm{d}x
x^{2} ga x^{3}+2x^{2}-5 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\int x^{5}\mathrm{d}x+\int 2x^{4}\mathrm{d}x+\int -5x^{2}\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
\int x^{5}\mathrm{d}x+2\int x^{4}\mathrm{d}x-5\int x^{2}\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{6}}{6}+2\int x^{4}\mathrm{d}x-5\int x^{2}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{5}\mathrm{d}x integralni \frac{x^{6}}{6} bilan almashtiring.
\frac{x^{6}}{6}+\frac{2x^{5}}{5}-5\int x^{2}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{4}\mathrm{d}x integralni \frac{x^{5}}{5} bilan almashtiring. 2 ni \frac{x^{5}}{5} marotabaga ko'paytirish.
\frac{x^{6}}{6}+\frac{2x^{5}}{5}-\frac{5x^{3}}{3}
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring. -5 ni \frac{x^{3}}{3} marotabaga ko'paytirish.
\frac{x^{6}}{6}+\frac{2x^{5}}{5}-\frac{5x^{3}}{3}+С
Агар F\left(x\right)f\left(x\right) ning dastlabki holati boʻlsa, u holatda f\left(x\right) ning barcha dastlabki holatlari toʻplami F\left(x\right)+C tarafidan belgilanadi. Shu sababli natijaga C\in \mathrm{R} integrallash konstantasini qoʻshing.