t uchun yechish
\left\{\begin{matrix}t=\frac{ex+С}{\psi }\text{, }&\psi \neq 0\\t\in \mathrm{R}\text{, }&x=-\frac{С}{e}\text{ and }\psi =0\end{matrix}\right,
ψ uchun yechish
\left\{\begin{matrix}\psi =\frac{ex+С}{t}\text{, }&t\neq 0\\\psi \in \mathrm{R}\text{, }&x=-\frac{С}{e}\text{ and }t=0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
t\psi =\int e\mathrm{d}x
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\psi t=ex+С
Tenglama standart shaklda.
\frac{\psi t}{\psi }=\frac{ex+С}{\psi }
Ikki tarafini \psi ga bo‘ling.
t=\frac{ex+С}{\psi }
\psi ga bo'lish \psi ga ko'paytirishni bekor qiladi.
t\psi =\int e\mathrm{d}x
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
t\psi =ex+С
Tenglama standart shaklda.
\frac{t\psi }{t}=\frac{ex+С}{t}
Ikki tarafini t ga bo‘ling.
\psi =\frac{ex+С}{t}
t ga bo'lish t ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}