Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int x^{3}+2x+1\mathrm{d}x
Avval noaniq integralni baholang.
\int x^{3}\mathrm{d}x+\int 2x\mathrm{d}x+\int 1\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
\int x^{3}\mathrm{d}x+2\int x\mathrm{d}x+\int 1\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{4}}{4}+2\int x\mathrm{d}x+\int 1\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{3}\mathrm{d}x integralni \frac{x^{4}}{4} bilan almashtiring.
\frac{x^{4}}{4}+x^{2}+\int 1\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring. 2 ni \frac{x^{2}}{2} marotabaga ko'paytirish.
\frac{x^{4}}{4}+x^{2}+x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, 1 integralini toping.
\frac{9^{4}}{4}+9^{2}+9-\left(\frac{4^{4}}{4}+4^{2}+4\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{6585}{4}
Qisqartirish.