Baholash
\frac{1981}{3}\approx 660,333333333
Viktorina
Integration
5xshash muammolar:
\int _ { 1 } ^ { 2 } ( x ^ { 3 } + 5 ) ^ { 2 } ( 3 x ^ { 2 } ) d x
Baham ko'rish
Klipbordga nusxa olish
\int _{1}^{2}\left(\left(x^{3}\right)^{2}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(x^{3}+5\right)^{2} kengaytirilishi uchun ishlating.
\int _{1}^{2}\left(x^{6}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 3 va 2 ni ko‘paytirib, 6 ni oling.
\int _{1}^{2}\left(3x^{6}+30x^{3}+75\right)x^{2}\mathrm{d}x
x^{6}+10x^{3}+25 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\int _{1}^{2}3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
3x^{6}+30x^{3}+75 ga x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\int 3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
Avval noaniq integralni baholang.
\int 3x^{8}\mathrm{d}x+\int 30x^{5}\mathrm{d}x+\int 75x^{2}\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
3\int x^{8}\mathrm{d}x+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{9}}{3}+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{8}\mathrm{d}x integralni \frac{x^{9}}{9} bilan almashtiring. 3 ni \frac{x^{9}}{9} marotabaga ko'paytirish.
\frac{x^{9}}{3}+5x^{6}+75\int x^{2}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{5}\mathrm{d}x integralni \frac{x^{6}}{6} bilan almashtiring. 30 ni \frac{x^{6}}{6} marotabaga ko'paytirish.
\frac{x^{9}}{3}+5x^{6}+25x^{3}
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring. 75 ni \frac{x^{3}}{3} marotabaga ko'paytirish.
25\times 2^{3}+5\times 2^{6}+\frac{2^{9}}{3}-\left(25\times 1^{3}+5\times 1^{6}+\frac{1^{9}}{3}\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{1981}{3}
Qisqartirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}