Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int _{1}^{2}\left(\left(x^{2}\right)^{3}-3\left(x^{2}\right)^{2}+3x^{2}-1\right)x\mathrm{d}x
\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} binom teoremasini \left(x^{2}-1\right)^{3} kengaytirilishi uchun ishlating.
\int _{1}^{2}\left(x^{6}-3\left(x^{2}\right)^{2}+3x^{2}-1\right)x\mathrm{d}x
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 3 ni ko‘paytirib, 6 ni oling.
\int _{1}^{2}\left(x^{6}-3x^{4}+3x^{2}-1\right)x\mathrm{d}x
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\int _{1}^{2}x^{7}-3x^{5}+3x^{3}-x\mathrm{d}x
x^{6}-3x^{4}+3x^{2}-1 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\int x^{7}-3x^{5}+3x^{3}-x\mathrm{d}x
Avval noaniq integralni baholang.
\int x^{7}\mathrm{d}x+\int -3x^{5}\mathrm{d}x+\int 3x^{3}\mathrm{d}x+\int -x\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
\int x^{7}\mathrm{d}x-3\int x^{5}\mathrm{d}x+3\int x^{3}\mathrm{d}x-\int x\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{8}}{8}-3\int x^{5}\mathrm{d}x+3\int x^{3}\mathrm{d}x-\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{7}\mathrm{d}x integralni \frac{x^{8}}{8} bilan almashtiring.
\frac{x^{8}}{8}-\frac{x^{6}}{2}+3\int x^{3}\mathrm{d}x-\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{5}\mathrm{d}x integralni \frac{x^{6}}{6} bilan almashtiring. -3 ni \frac{x^{6}}{6} marotabaga ko'paytirish.
\frac{x^{8}}{8}-\frac{x^{6}}{2}+\frac{3x^{4}}{4}-\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{3}\mathrm{d}x integralni \frac{x^{4}}{4} bilan almashtiring. 3 ni \frac{x^{4}}{4} marotabaga ko'paytirish.
\frac{x^{8}}{8}-\frac{x^{6}}{2}+\frac{3x^{4}}{4}-\frac{x^{2}}{2}
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring. -1 ni \frac{x^{2}}{2} marotabaga ko'paytirish.
-\frac{x^{2}}{2}+\frac{3x^{4}}{4}-\frac{x^{6}}{2}+\frac{x^{8}}{8}
Qisqartirish.
-\frac{2^{2}}{2}+\frac{3}{4}\times 2^{4}-\frac{2^{6}}{2}+\frac{2^{8}}{8}-\left(-\frac{1^{2}}{2}+\frac{3}{4}\times 1^{4}-\frac{1^{6}}{2}+\frac{1^{8}}{8}\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{81}{8}
Qisqartirish.