Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int x+x^{2}+x^{4}\mathrm{d}x
Avval noaniq integralni baholang.
\int x\mathrm{d}x+\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
\frac{x^{2}}{2}+\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring.
\frac{x^{2}}{2}+\frac{x^{3}}{3}+\int x^{4}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring.
\frac{x^{2}}{2}+\frac{x^{3}}{3}+\frac{x^{5}}{5}
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{4}\mathrm{d}x integralni \frac{x^{5}}{5} bilan almashtiring.
\frac{2^{2}}{2}+\frac{2^{3}}{3}+\frac{2^{5}}{5}-\left(\frac{1^{2}}{2}+\frac{1^{3}}{3}+\frac{1^{5}}{5}\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{301}{30}
Qisqartirish.