Baholash
\frac{1}{72}\approx 0,013888889
Baham ko'rish
Klipbordga nusxa olish
\int _{0\times 5}^{1}p^{7}-p^{8}\mathrm{d}p
p^{7} ga 1-p ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\int _{0}^{1}p^{7}-p^{8}\mathrm{d}p
0 hosil qilish uchun 0 va 5 ni ko'paytirish.
\int p^{7}-p^{8}\mathrm{d}p
Avval noaniq integralni baholang.
\int p^{7}\mathrm{d}p+\int -p^{8}\mathrm{d}p
Summani muddatma-muddat integratsiya qiling.
\int p^{7}\mathrm{d}p-\int p^{8}\mathrm{d}p
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{p^{8}}{8}-\int p^{8}\mathrm{d}p
k\neq -1 uchun integral \int p^{k}\mathrm{d}p=\frac{p^{k+1}}{k+1} boʻlgani uchun, \int p^{7}\mathrm{d}p integralni \frac{p^{8}}{8} bilan almashtiring.
\frac{p^{8}}{8}-\frac{p^{9}}{9}
k\neq -1 uchun integral \int p^{k}\mathrm{d}p=\frac{p^{k+1}}{k+1} boʻlgani uchun, \int p^{8}\mathrm{d}p integralni \frac{p^{9}}{9} bilan almashtiring. -1 ni \frac{p^{9}}{9} marotabaga ko'paytirish.
\frac{1^{8}}{8}-\frac{1^{9}}{9}-\left(\frac{0^{8}}{8}-\frac{0^{9}}{9}\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{1}{72}
Qisqartirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}