Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int _{0}^{2}1+2x^{2}+\left(x^{2}\right)^{2}\mathrm{d}x
\left(a+b\right)^{2}=a^{2}+2ab+b^{2} binom teoremasini \left(1+x^{2}\right)^{2} kengaytirilishi uchun ishlating.
\int _{0}^{2}1+2x^{2}+x^{4}\mathrm{d}x
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\int 1+2x^{2}+x^{4}\mathrm{d}x
Avval noaniq integralni baholang.
\int 1\mathrm{d}x+\int 2x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
\int 1\mathrm{d}x+2\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
x+2\int x^{2}\mathrm{d}x+\int x^{4}\mathrm{d}x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, 1 integralini toping.
x+\frac{2x^{3}}{3}+\int x^{4}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring. 2 ni \frac{x^{3}}{3} marotabaga ko'paytirish.
x+\frac{2x^{3}}{3}+\frac{x^{5}}{5}
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{4}\mathrm{d}x integralni \frac{x^{5}}{5} bilan almashtiring.
\frac{x^{5}}{5}+\frac{2x^{3}}{3}+x
Qisqartirish.
\frac{2^{5}}{5}+\frac{2}{3}\times 2^{3}+2-\left(\frac{0^{5}}{5}+\frac{2}{3}\times 0^{3}+0\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{206}{15}
Qisqartirish.