Baholash
\frac{2\left(-4\cos(x)+3\right)\left(\cos(x)\right)^{2}}{3}
x ga nisbatan hosilani topish
2\sin(2x)\left(2\cos(x)-1\right)
Baham ko'rish
Klipbordga nusxa olish
\int r-r^{2}\mathrm{d}r
Avval noaniq integralni baholang.
\int r\mathrm{d}r+\int -r^{2}\mathrm{d}r
Summani muddatma-muddat integratsiya qiling.
\int r\mathrm{d}r-\int r^{2}\mathrm{d}r
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{r^{2}}{2}-\int r^{2}\mathrm{d}r
k\neq -1 uchun integral \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} boʻlgani uchun, \int r\mathrm{d}r integralni \frac{r^{2}}{2} bilan almashtiring.
\frac{r^{2}}{2}-\frac{r^{3}}{3}
k\neq -1 uchun integral \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} boʻlgani uchun, \int r^{2}\mathrm{d}r integralni \frac{r^{3}}{3} bilan almashtiring. -1 ni \frac{r^{3}}{3} marotabaga ko'paytirish.
\frac{1}{2}\times \left(2\cos(x)\right)^{2}-\frac{1}{3}\times \left(2\cos(x)\right)^{3}-\left(\frac{0^{2}}{2}-\frac{0^{3}}{3}\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\left(\cos(x)\right)^{2}\left(2-\frac{8\cos(x)}{3}\right)
Qisqartirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}