Asosiy tarkibga oʻtish
Baholash
Tick mark Image
y ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int \sqrt{x}+\sqrt{y-4}\mathrm{d}x
Avval noaniq integralni baholang.
\int \sqrt{x}\mathrm{d}x+\int \sqrt{y-4}\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
\frac{2x^{\frac{3}{2}}}{3}+\int \sqrt{y-4}\mathrm{d}x
\sqrt{x} ni x^{\frac{1}{2}} sifatida qaytadan yozish. k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{\frac{1}{2}}\mathrm{d}x integralni \frac{x^{\frac{3}{2}}}{\frac{3}{2}} bilan almashtiring. Qisqartirish.
\frac{2x^{\frac{3}{2}}}{3}+\sqrt{y-4}x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, \sqrt{y-4} integralini toping.
\frac{2}{3}\times 16^{\frac{3}{2}}+\left(y-4\right)^{\frac{1}{2}}\times 16-\left(\frac{2}{3}\times 0^{\frac{3}{2}}+\left(y-4\right)^{\frac{1}{2}}\times 0\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{128}{3}+16\sqrt{y-4}
Qisqartirish.