Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int _{0}^{12}-\frac{13}{90}x^{2}+1x+\frac{72}{5}\mathrm{d}x
1 ni olish uchun 13 ni 13 ga bo‘ling.
\int -\frac{13x^{2}}{90}+x+\frac{72}{5}\mathrm{d}x
Avval noaniq integralni baholang.
\int -\frac{13x^{2}}{90}\mathrm{d}x+\int x\mathrm{d}x+\int \frac{72}{5}\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
-\frac{13\int x^{2}\mathrm{d}x}{90}+\int x\mathrm{d}x+\int \frac{72}{5}\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
-\frac{13x^{3}}{270}+\int x\mathrm{d}x+\int \frac{72}{5}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring. -\frac{13}{90} ni \frac{x^{3}}{3} marotabaga ko'paytirish.
-\frac{13x^{3}}{270}+\frac{x^{2}}{2}+\int \frac{72}{5}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring.
-\frac{13x^{3}}{270}+\frac{x^{2}}{2}+\frac{72x}{5}
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, \frac{72}{5} integralini toping.
-\frac{13}{270}\times 12^{3}+\frac{12^{2}}{2}+\frac{72}{5}\times 12-\left(-\frac{13}{270}\times 0^{3}+\frac{0^{2}}{2}+\frac{72}{5}\times 0\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{808}{5}
Qisqartirish.