Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int x^{2}-7x+9\mathrm{d}x
Avval noaniq integralni baholang.
\int x^{2}\mathrm{d}x+\int -7x\mathrm{d}x+\int 9\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
\int x^{2}\mathrm{d}x-7\int x\mathrm{d}x+\int 9\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{3}}{3}-7\int x\mathrm{d}x+\int 9\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring.
\frac{x^{3}}{3}-\frac{7x^{2}}{2}+\int 9\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring. -7 ni \frac{x^{2}}{2} marotabaga ko'paytirish.
\frac{x^{3}}{3}-\frac{7x^{2}}{2}+9x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, 9 integralini toping.
\frac{100^{3}}{3}-\frac{7}{2}\times 100^{2}+9\times 100-\left(\frac{0^{3}}{3}-\frac{7}{2}\times 0^{2}+9\times 0\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{897700}{3}
Qisqartirish.