Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int x^{2}+5x+2\mathrm{d}x
Avval noaniq integralni baholang.
\int x^{2}\mathrm{d}x+\int 5x\mathrm{d}x+\int 2\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
\int x^{2}\mathrm{d}x+5\int x\mathrm{d}x+\int 2\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{3}}{3}+5\int x\mathrm{d}x+\int 2\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring.
\frac{x^{3}}{3}+\frac{5x^{2}}{2}+\int 2\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring. 5 ni \frac{x^{2}}{2} marotabaga ko'paytirish.
\frac{x^{3}}{3}+\frac{5x^{2}}{2}+2x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, 2 integralini toping.
\frac{10^{3}}{3}+\frac{5}{2}\times 10^{2}+2\times 10-\left(\frac{0^{3}}{3}+\frac{5}{2}\times 0^{2}+2\times 0\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{1810}{3}
Qisqartirish.