Baholash
\frac{7}{3}\approx 2,333333333
Baham ko'rish
Klipbordga nusxa olish
\int 5u^{5}+3u^{2}+u\mathrm{d}u
Avval noaniq integralni baholang.
\int 5u^{5}\mathrm{d}u+\int 3u^{2}\mathrm{d}u+\int u\mathrm{d}u
Summani muddatma-muddat integratsiya qiling.
5\int u^{5}\mathrm{d}u+3\int u^{2}\mathrm{d}u+\int u\mathrm{d}u
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{5u^{6}}{6}+3\int u^{2}\mathrm{d}u+\int u\mathrm{d}u
k\neq -1 uchun integral \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} boʻlgani uchun, \int u^{5}\mathrm{d}u integralni \frac{u^{6}}{6} bilan almashtiring. 5 ni \frac{u^{6}}{6} marotabaga ko'paytirish.
\frac{5u^{6}}{6}+u^{3}+\int u\mathrm{d}u
k\neq -1 uchun integral \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} boʻlgani uchun, \int u^{2}\mathrm{d}u integralni \frac{u^{3}}{3} bilan almashtiring. 3 ni \frac{u^{3}}{3} marotabaga ko'paytirish.
\frac{5u^{6}}{6}+u^{3}+\frac{u^{2}}{2}
k\neq -1 uchun integral \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} boʻlgani uchun, \int u\mathrm{d}u integralni \frac{u^{2}}{2} bilan almashtiring.
\frac{5}{6}\times 1^{6}+1^{3}+\frac{1^{2}}{2}-\left(\frac{5}{6}\times 0^{6}+0^{3}+\frac{0^{2}}{2}\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{7}{3}
Qisqartirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}