Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int 5u^{5}+3u^{2}+u\mathrm{d}u
Avval noaniq integralni baholang.
\int 5u^{5}\mathrm{d}u+\int 3u^{2}\mathrm{d}u+\int u\mathrm{d}u
Summani muddatma-muddat integratsiya qiling.
5\int u^{5}\mathrm{d}u+3\int u^{2}\mathrm{d}u+\int u\mathrm{d}u
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{5u^{6}}{6}+3\int u^{2}\mathrm{d}u+\int u\mathrm{d}u
k\neq -1 uchun integral \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} boʻlgani uchun, \int u^{5}\mathrm{d}u integralni \frac{u^{6}}{6} bilan almashtiring. 5 ni \frac{u^{6}}{6} marotabaga ko'paytirish.
\frac{5u^{6}}{6}+u^{3}+\int u\mathrm{d}u
k\neq -1 uchun integral \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} boʻlgani uchun, \int u^{2}\mathrm{d}u integralni \frac{u^{3}}{3} bilan almashtiring. 3 ni \frac{u^{3}}{3} marotabaga ko'paytirish.
\frac{5u^{6}}{6}+u^{3}+\frac{u^{2}}{2}
k\neq -1 uchun integral \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} boʻlgani uchun, \int u\mathrm{d}u integralni \frac{u^{2}}{2} bilan almashtiring.
\frac{5}{6}\times 1^{6}+1^{3}+\frac{1^{2}}{2}-\left(\frac{5}{6}\times 0^{6}+0^{3}+\frac{0^{2}}{2}\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{7}{3}
Qisqartirish.