Baholash
1
Baham ko'rish
Klipbordga nusxa olish
\int 1-8v^{3}+16v^{7}\mathrm{d}v
Avval noaniq integralni baholang.
\int 1\mathrm{d}v+\int -8v^{3}\mathrm{d}v+\int 16v^{7}\mathrm{d}v
Summani muddatma-muddat integratsiya qiling.
\int 1\mathrm{d}v-8\int v^{3}\mathrm{d}v+16\int v^{7}\mathrm{d}v
Har bir shartda konstantani qavsdan tashqariga oling.
v-8\int v^{3}\mathrm{d}v+16\int v^{7}\mathrm{d}v
\int a\mathrm{d}v=av umumiy integrallar qoidasi jadvalidan foydalanib, 1 integralini toping.
v-2v^{4}+16\int v^{7}\mathrm{d}v
k\neq -1 uchun integral \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} boʻlgani uchun, \int v^{3}\mathrm{d}v integralni \frac{v^{4}}{4} bilan almashtiring. -8 ni \frac{v^{4}}{4} marotabaga ko'paytirish.
v-2v^{4}+2v^{8}
k\neq -1 uchun integral \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} boʻlgani uchun, \int v^{7}\mathrm{d}v integralni \frac{v^{8}}{8} bilan almashtiring. 16 ni \frac{v^{8}}{8} marotabaga ko'paytirish.
1-2\times 1^{4}+2\times 1^{8}-\left(0-2\times 0^{4}+2\times 0^{8}\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
1
Qisqartirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}