Baholash
\frac{1}{4}=0,25
Baham ko'rish
Klipbordga nusxa olish
\int \frac{1-y^{3}}{3}\mathrm{d}y
Avval noaniq integralni baholang.
\int \frac{1}{3}\mathrm{d}y+\int -\frac{y^{3}}{3}\mathrm{d}y
Summani muddatma-muddat integratsiya qiling.
\int \frac{1}{3}\mathrm{d}y-\frac{\int y^{3}\mathrm{d}y}{3}
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{y-\int y^{3}\mathrm{d}y}{3}
\int a\mathrm{d}y=ay umumiy integrallar qoidasi jadvalidan foydalanib, \frac{1}{3} integralini toping.
\frac{y}{3}-\frac{y^{4}}{12}
k\neq -1 uchun integral \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} boʻlgani uchun, \int y^{3}\mathrm{d}y integralni \frac{y^{4}}{4} bilan almashtiring. -\frac{1}{3} ni \frac{y^{4}}{4} marotabaga ko'paytirish.
\frac{1}{3}\times 1-\frac{1^{4}}{12}-\left(\frac{1}{3}\times 0-\frac{0^{4}}{12}\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{1}{4}
Qisqartirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}