Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int \frac{x^{2}}{2}-x^{4}\mathrm{d}x
Avval noaniq integralni baholang.
\int \frac{x^{2}}{2}\mathrm{d}x+\int -x^{4}\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
\frac{\int x^{2}\mathrm{d}x}{2}-\int x^{4}\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{3}}{6}-\int x^{4}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring. \frac{1}{2} ni \frac{x^{3}}{3} marotabaga ko'paytirish.
\frac{x^{3}}{6}-\frac{x^{5}}{5}
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{4}\mathrm{d}x integralni \frac{x^{5}}{5} bilan almashtiring. -1 ni \frac{x^{5}}{5} marotabaga ko'paytirish.
\frac{1}{6}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{3}-\frac{1}{5}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{5}-\left(\frac{0^{3}}{6}-\frac{0^{5}}{5}\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{\sqrt{2}}{60}
Qisqartirish.