Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int \frac{1}{x^{2}}-\frac{1}{x^{3}}\mathrm{d}x
Avval noaniq integralni baholang.
\int \frac{1}{x^{2}}\mathrm{d}x+\int -\frac{1}{x^{3}}\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
\int \frac{1}{x^{2}}\mathrm{d}x-\int \frac{1}{x^{3}}\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
-\frac{1}{x}-\int \frac{1}{x^{3}}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int \frac{1}{x^{2}}\mathrm{d}x integralni -\frac{1}{x} bilan almashtiring.
-\frac{1}{x}+\frac{1}{2x^{2}}
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int \frac{1}{x^{3}}\mathrm{d}x integralni -\frac{1}{2x^{2}} bilan almashtiring. -1 ni -\frac{1}{2x^{2}} marotabaga ko'paytirish.
\frac{\frac{1}{2}-x}{x^{2}}
Qisqartirish.
\left(\frac{1}{2}-\left(-1\right)\right)\left(-1\right)^{-2}-\left(\frac{1}{2}-\left(-3\right)\right)\left(-3\right)^{-2}
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{10}{9}
Qisqartirish.