Baholash
\frac{490}{3}\approx 163,333333333
Baham ko'rish
Klipbordga nusxa olish
\int 4x^{2}-2x+1\mathrm{d}x
Avval noaniq integralni baholang.
\int 4x^{2}\mathrm{d}x+\int -2x\mathrm{d}x+\int 1\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
4\int x^{2}\mathrm{d}x-2\int x\mathrm{d}x+\int 1\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{4x^{3}}{3}-2\int x\mathrm{d}x+\int 1\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring. 4 ni \frac{x^{3}}{3} marotabaga ko'paytirish.
\frac{4x^{3}}{3}-x^{2}+\int 1\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring. -2 ni \frac{x^{2}}{2} marotabaga ko'paytirish.
\frac{4x^{3}}{3}-x^{2}+x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, 1 integralini toping.
\frac{4}{3}\times 5^{3}-5^{2}+5-\left(\frac{4}{3}\left(-2\right)^{3}-\left(-2\right)^{2}-2\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{490}{3}
Qisqartirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}