Asosiy tarkibga oʻtish
Baholash
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int x^{3}-3x+2\mathrm{d}x
Avval noaniq integralni baholang.
\int x^{3}\mathrm{d}x+\int -3x\mathrm{d}x+\int 2\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
\int x^{3}\mathrm{d}x-3\int x\mathrm{d}x+\int 2\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{4}}{4}-3\int x\mathrm{d}x+\int 2\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{3}\mathrm{d}x integralni \frac{x^{4}}{4} bilan almashtiring.
\frac{x^{4}}{4}-\frac{3x^{2}}{2}+\int 2\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring. -3 ni \frac{x^{2}}{2} marotabaga ko'paytirish.
\frac{x^{4}}{4}-\frac{3x^{2}}{2}+2x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, 2 integralini toping.
\frac{1^{4}}{4}-\frac{3}{2}\times 1^{2}+2\times 1-\left(\frac{\left(-2\right)^{4}}{4}-\frac{3}{2}\left(-2\right)^{2}+2\left(-2\right)\right)
Xos integral bu integral hisoblashning yuqori chegarasida hisoblangan ifodaning boshlangʻich holatidan chiqarib tashlagan holda integral hisoblashning quyi chegarasida hisoblangan ifodaning boshlangʻich holatidir.
\frac{27}{4}
Qisqartirish.