Baholash
\frac{x^{4}}{2}+64x+С
x ga nisbatan hosilani topish
2\left(x^{3}+32\right)
Baham ko'rish
Klipbordga nusxa olish
\int x^{3}-3x^{2}+3x-1+\left(x-1\right)^{2}-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} binom teoremasini \left(x-1\right)^{3} kengaytirilishi uchun ishlating.
\int x^{3}-3x^{2}+3x-1+x^{2}-2x+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
\left(a-b\right)^{2}=a^{2}-2ab+b^{2} binom teoremasini \left(x-1\right)^{2} kengaytirilishi uchun ishlating.
\int x^{3}-2x^{2}+3x-1-2x+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
-2x^{2} ni olish uchun -3x^{2} va x^{2} ni birlashtirish.
\int x^{3}-2x^{2}+x-1+1-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
x ni olish uchun 3x va -2x ni birlashtirish.
\int x^{3}-2x^{2}+x-x+x\left(4-x\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
0 olish uchun -1 va 1'ni qo'shing.
\int x^{3}-2x^{2}+x-x+\left(4x-x^{2}\right)\left(4+x\right)+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
x ga 4-x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\int x^{3}-2x^{2}+x-x+16x-x^{3}+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
4x-x^{2} ga 4+x ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
\int x^{3}-2x^{2}+17x-x-x^{3}+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
17x ni olish uchun x va 16x ni birlashtirish.
\int -2x^{2}+17x-x+\left(8-x-x^{2}\right)^{2}+x^{2}\left(17-x^{2}\right)\mathrm{d}x
0 ni olish uchun x^{3} va -x^{3} ni birlashtirish.
\int -2x^{2}+17x-x+x^{4}+2x^{3}-15x^{2}-16x+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
8-x-x^{2} kvadratini chiqarish.
\int -17x^{2}+17x-x+x^{4}+2x^{3}-16x+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
-17x^{2} ni olish uchun -2x^{2} va -15x^{2} ni birlashtirish.
\int -17x^{2}+x-x+x^{4}+2x^{3}+64+x^{2}\left(17-x^{2}\right)\mathrm{d}x
x ni olish uchun 17x va -16x ni birlashtirish.
\int -17x^{2}+x-x+x^{4}+2x^{3}+64+17x^{2}-x^{4}\mathrm{d}x
x^{2} ga 17-x^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\int x-x+x^{4}+2x^{3}+64-x^{4}\mathrm{d}x
0 ni olish uchun -17x^{2} va 17x^{2} ni birlashtirish.
\int x-x+2x^{3}+64\mathrm{d}x
0 ni olish uchun x^{4} va -x^{4} ni birlashtirish.
\int 2x^{3}+64\mathrm{d}x
0 ni olish uchun x va -x ni birlashtirish.
\int 2x^{3}\mathrm{d}x+\int 64\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
2\int x^{3}\mathrm{d}x+\int 64\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{4}}{2}+\int 64\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{3}\mathrm{d}x integralni \frac{x^{4}}{4} bilan almashtiring. 2 ni \frac{x^{4}}{4} marotabaga ko'paytirish.
\frac{x^{4}}{2}+64x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, 64 integralini toping.
64x+\frac{x^{4}}{2}+С
Агар F\left(x\right)f\left(x\right) ning dastlabki holati boʻlsa, u holatda f\left(x\right) ning barcha dastlabki holatlari toʻplami F\left(x\right)+C tarafidan belgilanadi. Shu sababli natijaga C\in \mathrm{R} integrallash konstantasini qoʻshing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}