Baholash
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}-9x+С
x ga nisbatan hosilani topish
\left(2x-1\right)\left(x+1\right)\left(x+9\right)
Baham ko'rish
Klipbordga nusxa olish
\int \left(2x^{2}-x+2x-1\right)\left(x+9\right)\mathrm{d}x
x+1 ifodaning har bir elementini 2x-1 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\int \left(2x^{2}+x-1\right)\left(x+9\right)\mathrm{d}x
x ni olish uchun -x va 2x ni birlashtirish.
\int 2x^{3}+18x^{2}+x^{2}+9x-x-9\mathrm{d}x
2x^{2}+x-1 ifodaning har bir elementini x+9 ifodaning har bir elementiga ko‘paytirish orqali taqsimot qonuni xususiyatlarini qo‘llash mumkin.
\int 2x^{3}+19x^{2}+9x-x-9\mathrm{d}x
19x^{2} ni olish uchun 18x^{2} va x^{2} ni birlashtirish.
\int 2x^{3}+19x^{2}+8x-9\mathrm{d}x
8x ni olish uchun 9x va -x ni birlashtirish.
\int 2x^{3}\mathrm{d}x+\int 19x^{2}\mathrm{d}x+\int 8x\mathrm{d}x+\int -9\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
2\int x^{3}\mathrm{d}x+19\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x+\int -9\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{4}}{2}+19\int x^{2}\mathrm{d}x+8\int x\mathrm{d}x+\int -9\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{3}\mathrm{d}x integralni \frac{x^{4}}{4} bilan almashtiring. 2 ni \frac{x^{4}}{4} marotabaga ko'paytirish.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+8\int x\mathrm{d}x+\int -9\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring. 19 ni \frac{x^{3}}{3} marotabaga ko'paytirish.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}+\int -9\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring. 8 ni \frac{x^{2}}{2} marotabaga ko'paytirish.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}-9x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, -9 integralini toping.
\frac{x^{4}}{2}+\frac{19x^{3}}{3}+4x^{2}-9x+С
Агар F\left(x\right)f\left(x\right) ning dastlabki holati boʻlsa, u holatda f\left(x\right) ning barcha dastlabki holatlari toʻplami F\left(x\right)+C tarafidan belgilanadi. Shu sababli natijaga C\in \mathrm{R} integrallash konstantasini qoʻshing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}