Baholash
\frac{x^{8}}{2}+10x^{6}+75x^{4}+250x^{2}+С
x ga nisbatan hosilani topish
4x\left(x^{2}+5\right)^{3}
Baham ko'rish
Klipbordga nusxa olish
\int 4x\left(\left(x^{2}\right)^{3}+15\left(x^{2}\right)^{2}+75x^{2}+125\right)\mathrm{d}x
\left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3} binom teoremasini \left(x^{2}+5\right)^{3} kengaytirilishi uchun ishlating.
\int 4x\left(x^{6}+15\left(x^{2}\right)^{2}+75x^{2}+125\right)\mathrm{d}x
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 3 ni ko‘paytirib, 6 ni oling.
\int 4x\left(x^{6}+15x^{4}+75x^{2}+125\right)\mathrm{d}x
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\int 4x^{7}+60x^{5}+300x^{3}+500x\mathrm{d}x
4x ga x^{6}+15x^{4}+75x^{2}+125 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\int 4x^{7}\mathrm{d}x+\int 60x^{5}\mathrm{d}x+\int 300x^{3}\mathrm{d}x+\int 500x\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
4\int x^{7}\mathrm{d}x+60\int x^{5}\mathrm{d}x+300\int x^{3}\mathrm{d}x+500\int x\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{8}}{2}+60\int x^{5}\mathrm{d}x+300\int x^{3}\mathrm{d}x+500\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{7}\mathrm{d}x integralni \frac{x^{8}}{8} bilan almashtiring. 4 ni \frac{x^{8}}{8} marotabaga ko'paytirish.
\frac{x^{8}}{2}+10x^{6}+300\int x^{3}\mathrm{d}x+500\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{5}\mathrm{d}x integralni \frac{x^{6}}{6} bilan almashtiring. 60 ni \frac{x^{6}}{6} marotabaga ko'paytirish.
\frac{x^{8}}{2}+10x^{6}+75x^{4}+500\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{3}\mathrm{d}x integralni \frac{x^{4}}{4} bilan almashtiring. 300 ni \frac{x^{4}}{4} marotabaga ko'paytirish.
\frac{x^{8}}{2}+10x^{6}+75x^{4}+250x^{2}
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring. 500 ni \frac{x^{2}}{2} marotabaga ko'paytirish.
250x^{2}+75x^{4}+10x^{6}+\frac{x^{8}}{2}+С
Агар F\left(x\right)f\left(x\right) ning dastlabki holati boʻlsa, u holatda f\left(x\right) ning barcha dastlabki holatlari toʻplami F\left(x\right)+C tarafidan belgilanadi. Shu sababli natijaga C\in \mathrm{R} integrallash konstantasini qoʻshing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}