C uchun yechish
C=С
x\neq 0
x uchun yechish
x\neq 0
C=С\text{ and }x\neq 0
Baham ko'rish
Klipbordga nusxa olish
x\int 4x^{3}-\frac{1}{x^{2}}\mathrm{d}x=xx^{4}+1+xC
Tenglamaning ikkala tarafini x ga ko'paytirish.
x\int 4x^{3}-\frac{1}{x^{2}}\mathrm{d}x=x^{5}+1+xC
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 1 va 4 ni qo‘shib, 5 ni oling.
x\int \frac{4x^{3}x^{2}}{x^{2}}-\frac{1}{x^{2}}\mathrm{d}x=x^{5}+1+xC
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 4x^{3} ni \frac{x^{2}}{x^{2}} marotabaga ko'paytirish.
x\int \frac{4x^{3}x^{2}-1}{x^{2}}\mathrm{d}x=x^{5}+1+xC
\frac{4x^{3}x^{2}}{x^{2}} va \frac{1}{x^{2}} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
x\int \frac{4x^{5}-1}{x^{2}}\mathrm{d}x=x^{5}+1+xC
4x^{3}x^{2}-1 ichidagi ko‘paytirishlarni bajaring.
x^{5}+1+xC=x\int \frac{4x^{5}-1}{x^{2}}\mathrm{d}x
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
1+xC=x\int \frac{4x^{5}-1}{x^{2}}\mathrm{d}x-x^{5}
Ikkala tarafdan x^{5} ni ayirish.
xC=x\int \frac{4x^{5}-1}{x^{2}}\mathrm{d}x-x^{5}-1
Ikkala tarafdan 1 ni ayirish.
xC=Сx
Tenglama standart shaklda.
\frac{xC}{x}=\frac{Сx}{x}
Ikki tarafini x ga bo‘ling.
C=\frac{Сx}{x}
x ga bo'lish x ga ko'paytirishni bekor qiladi.
C=С
Сx ni x ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}