Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int 2x^{5}\mathrm{d}x+\int \frac{3}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
2\int x^{5}\mathrm{d}x+3\int \frac{1}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{6}}{3}+3\int \frac{1}{x}\mathrm{d}x+\int \frac{1}{x^{9}}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{5}\mathrm{d}x integralni \frac{x^{6}}{6} bilan almashtiring. 2 ni \frac{x^{6}}{6} marotabaga ko'paytirish.
\frac{x^{6}}{3}+3\ln(|x|)+\int \frac{1}{x^{9}}\mathrm{d}x
Natijani olish uchun umumiy integrallar jadvalidagi \int \frac{1}{x}\mathrm{d}x=\ln(|x|) integralidan foydalaning.
\frac{x^{6}}{3}+3\ln(|x|)-\frac{1}{8x^{8}}
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int \frac{1}{x^{9}}\mathrm{d}x integralni -\frac{1}{8x^{8}} bilan almashtiring.
\frac{x^{6}}{3}+3\ln(|x|)-\frac{1}{8x^{8}}+С
Агар F\left(x\right)f\left(x\right) ning dastlabki holati boʻlsa, u holatda f\left(x\right) ning barcha dastlabki holatlari toʻplami F\left(x\right)+C tarafidan belgilanadi. Shu sababli natijaga C\in \mathrm{R} integrallash konstantasini qoʻshing.