Baholash
-\frac{8xa^{2}b^{4}}{9}+С
x ga nisbatan hosilani topish
-\frac{8a^{2}b^{4}}{9}
Baham ko'rish
Klipbordga nusxa olish
\int \left(-\frac{1}{3}ab^{2}\right)^{2}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
a^{2} hosil qilish uchun a va a ni ko'paytirish.
\int \left(-\frac{1}{3}\right)^{2}a^{2}\left(b^{2}\right)^{2}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
\left(-\frac{1}{3}ab^{2}\right)^{2} ni kengaytirish.
\int \left(-\frac{1}{3}\right)^{2}a^{2}b^{4}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\int \frac{1}{9}a^{2}b^{4}-\left(2a^{2}\left(-3\right)b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
2 daraja ko‘rsatkichini -\frac{1}{3} ga hisoblang va \frac{1}{9} ni qiymatni oling.
\int \frac{1}{9}a^{2}b^{4}-\left(-6a^{2}b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
-6 hosil qilish uchun 2 va -3 ni ko'paytirish.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}\left(a^{2}\right)^{2}\left(b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
\left(-6a^{2}b^{2}\right)^{2} ni kengaytirish.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}a^{4}\left(b^{2}\right)^{2}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\int \frac{1}{9}a^{2}b^{4}-\left(-6\right)^{2}a^{4}b^{4}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(\left(2ab^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
2 daraja ko‘rsatkichini -6 ga hisoblang va 36 ni qiymatni oling.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(2^{2}a^{2}\left(b^{2}\right)^{2}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
\left(2ab^{2}\right)^{2} ni kengaytirish.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(2^{2}a^{2}b^{4}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
Daraja ko‘rsatkichini boshqa ko‘rsatkichga oshirish uchun, darajalarini ko‘paytiring. 2 va 2 ni ko‘paytirib, 4 ni oling.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(4a^{2}b^{4}\left(-9\right)a^{2}+a^{2}b^{4}\right)\mathrm{d}x
2 daraja ko‘rsatkichini 2 ga hisoblang va 4 ni qiymatni oling.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(-36a^{2}b^{4}a^{2}+a^{2}b^{4}\right)\mathrm{d}x
-36 hosil qilish uchun 4 va -9 ni ko'paytirish.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}-\left(-36a^{4}b^{4}+a^{2}b^{4}\right)\mathrm{d}x
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 2 va 2 ni qo‘shib, 4 ni oling.
\int \frac{1}{9}a^{2}b^{4}-36a^{4}b^{4}+36a^{4}b^{4}-a^{2}b^{4}\mathrm{d}x
-36a^{4}b^{4}+a^{2}b^{4} teskarisini topish uchun har birining teskarisini toping.
\int \frac{1}{9}a^{2}b^{4}-a^{2}b^{4}\mathrm{d}x
0 ni olish uchun -36a^{4}b^{4} va 36a^{4}b^{4} ni birlashtirish.
\int -\frac{8}{9}a^{2}b^{4}\mathrm{d}x
-\frac{8}{9}a^{2}b^{4} ni olish uchun \frac{1}{9}a^{2}b^{4} va -a^{2}b^{4} ni birlashtirish.
\left(-\frac{8a^{2}b^{4}}{9}\right)x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, -\frac{8a^{2}b^{4}}{9} integralini toping.
-\frac{8a^{2}b^{4}x}{9}
Qisqartirish.
-\frac{8a^{2}b^{4}x}{9}+С
Агар F\left(x\right)f\left(x\right) ning dastlabki holati boʻlsa, u holatda f\left(x\right) ning barcha dastlabki holatlari toʻplami F\left(x\right)+C tarafidan belgilanadi. Shu sababli natijaga C\in \mathrm{R} integrallash konstantasini qoʻshing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}