Baholash
12t^{\frac{3}{4}}-\frac{2}{3t^{6}}+С
t ga nisbatan hosilani topish
\frac{9}{\sqrt[4]{t}}+\frac{4}{t^{7}}
Baham ko'rish
Klipbordga nusxa olish
\int \frac{9}{\sqrt[4]{t}}\mathrm{d}t+\int \frac{4}{t^{7}}\mathrm{d}t
Summani muddatma-muddat integratsiya qiling.
9\int \frac{1}{\sqrt[4]{t}}\mathrm{d}t+4\int \frac{1}{t^{7}}\mathrm{d}t
Har bir shartda konstantani qavsdan tashqariga oling.
12t^{\frac{3}{4}}+4\int \frac{1}{t^{7}}\mathrm{d}t
\frac{1}{\sqrt[4]{t}} ni t^{-\frac{1}{4}} sifatida qaytadan yozish. k\neq -1 uchun integral \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} boʻlgani uchun, \int t^{-\frac{1}{4}}\mathrm{d}t integralni \frac{t^{\frac{3}{4}}}{\frac{3}{4}} bilan almashtiring. Qisqartirish. 9 ni \frac{4t^{\frac{3}{4}}}{3} marotabaga ko'paytirish.
12t^{\frac{3}{4}}-\frac{2}{3t^{6}}
k\neq -1 uchun integral \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} boʻlgani uchun, \int \frac{1}{t^{7}}\mathrm{d}t integralni -\frac{1}{6t^{6}} bilan almashtiring. 4 ni -\frac{1}{6t^{6}} marotabaga ko'paytirish.
12t^{\frac{3}{4}}-\frac{2}{3t^{6}}+С
Агар F\left(t\right)f\left(t\right) ning dastlabki holati boʻlsa, u holatda f\left(t\right) ning barcha dastlabki holatlari toʻplami F\left(t\right)+C tarafidan belgilanadi. Shu sababli natijaga C\in \mathrm{R} integrallash konstantasini qoʻshing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}