Baholash
\frac{405x}{784}+С
x ga nisbatan hosilani topish
\frac{405}{784} = 0,5165816326530612
Baham ko'rish
Klipbordga nusxa olish
\int \left(\frac{9}{14}\right)^{2}+\left(\frac{3}{4}-\frac{3}{7}\right)^{2}\mathrm{d}x
\frac{9}{14} olish uchun \frac{8}{7} dan \frac{1}{2} ni ayirish.
\int \frac{81}{196}+\left(\frac{3}{4}-\frac{3}{7}\right)^{2}\mathrm{d}x
2 daraja ko‘rsatkichini \frac{9}{14} ga hisoblang va \frac{81}{196} ni qiymatni oling.
\int \frac{81}{196}+\left(\frac{9}{28}\right)^{2}\mathrm{d}x
\frac{9}{28} olish uchun \frac{3}{4} dan \frac{3}{7} ni ayirish.
\int \frac{81}{196}+\frac{81}{784}\mathrm{d}x
2 daraja ko‘rsatkichini \frac{9}{28} ga hisoblang va \frac{81}{784} ni qiymatni oling.
\int \frac{405}{784}\mathrm{d}x
\frac{405}{784} olish uchun \frac{81}{196} va \frac{81}{784}'ni qo'shing.
\frac{405x}{784}
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, \frac{405}{784} integralini toping.
\frac{405x}{784}+С
Агар F\left(x\right)f\left(x\right) ning dastlabki holati boʻlsa, u holatda f\left(x\right) ning barcha dastlabki holatlari toʻplami F\left(x\right)+C tarafidan belgilanadi. Shu sababli natijaga C\in \mathrm{R} integrallash konstantasini qoʻshing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}