Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int \left(\frac{9}{14}\right)^{2}+\left(\frac{3}{4}-\frac{3}{7}\right)^{2}\mathrm{d}x
\frac{9}{14} olish uchun \frac{8}{7} dan \frac{1}{2} ni ayirish.
\int \frac{81}{196}+\left(\frac{3}{4}-\frac{3}{7}\right)^{2}\mathrm{d}x
2 daraja ko‘rsatkichini \frac{9}{14} ga hisoblang va \frac{81}{196} ni qiymatni oling.
\int \frac{81}{196}+\left(\frac{9}{28}\right)^{2}\mathrm{d}x
\frac{9}{28} olish uchun \frac{3}{4} dan \frac{3}{7} ni ayirish.
\int \frac{81}{196}+\frac{81}{784}\mathrm{d}x
2 daraja ko‘rsatkichini \frac{9}{28} ga hisoblang va \frac{81}{784} ni qiymatni oling.
\int \frac{405}{784}\mathrm{d}x
\frac{405}{784} olish uchun \frac{81}{196} va \frac{81}{784}'ni qo'shing.
\frac{405x}{784}
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, \frac{405}{784} integralini toping.
\frac{405x}{784}+С
Агар F\left(x\right)f\left(x\right) ning dastlabki holati boʻlsa, u holatda f\left(x\right) ning barcha dastlabki holatlari toʻplami F\left(x\right)+C tarafidan belgilanadi. Shu sababli natijaga C\in \mathrm{R} integrallash konstantasini qoʻshing.