Asosiy tarkibga oʻtish
c uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

4\int \sqrt[3]{3t}\mathrm{d}t=\left(3t\right)^{\frac{4}{2}}tc
Tenglamaning ikkala tarafini 4 ga ko'paytirish.
4\int \sqrt[3]{3t}\mathrm{d}t=\left(3t\right)^{2}tc
2 ni olish uchun 4 ni 2 ga bo‘ling.
4\int \sqrt[3]{3t}\mathrm{d}t=3^{2}t^{2}tc
\left(3t\right)^{2} ni kengaytirish.
4\int \sqrt[3]{3t}\mathrm{d}t=9t^{2}tc
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
4\int \sqrt[3]{3t}\mathrm{d}t=9t^{3}c
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 2 va 1 ni qo‘shib, 3 ni oling.
9t^{3}c=4\int \sqrt[3]{3t}\mathrm{d}t
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
9t^{3}c=4\sqrt[3]{3}t^{\frac{4}{3}}+4С
Tenglama standart shaklda.
\frac{9t^{3}c}{9t^{3}}=\frac{\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С}{9t^{3}}
Ikki tarafini 9t^{3} ga bo‘ling.
c=\frac{\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С}{9t^{3}}
9t^{3} ga bo'lish 9t^{3} ga ko'paytirishni bekor qiladi.
c=\frac{4\left(\frac{\left(3t\right)^{\frac{4}{3}}}{3}+С\right)}{9t^{3}}
\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С ni 9t^{3} ga bo'lish.