c uchun yechish
\left\{\begin{matrix}c=\frac{3^{\frac{4}{3}}}{9t^{\frac{5}{3}}}+\frac{4С}{9t^{3}}\text{, }&t\neq 0\\c\in \mathrm{R}\text{, }&С=0\text{ and }t=0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
4\int \sqrt[3]{3t}\mathrm{d}t=\left(3t\right)^{\frac{4}{2}}tc
Tenglamaning ikkala tarafini 4 ga ko'paytirish.
4\int \sqrt[3]{3t}\mathrm{d}t=\left(3t\right)^{2}tc
2 ni olish uchun 4 ni 2 ga bo‘ling.
4\int \sqrt[3]{3t}\mathrm{d}t=3^{2}t^{2}tc
\left(3t\right)^{2} ni kengaytirish.
4\int \sqrt[3]{3t}\mathrm{d}t=9t^{2}tc
2 daraja ko‘rsatkichini 3 ga hisoblang va 9 ni qiymatni oling.
4\int \sqrt[3]{3t}\mathrm{d}t=9t^{3}c
Ayni asosning daraja ko‘rsatkichlarini ko‘paytirish uchun ularning darajalarini qo‘shing. 2 va 1 ni qo‘shib, 3 ni oling.
9t^{3}c=4\int \sqrt[3]{3t}\mathrm{d}t
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
9t^{3}c=4\sqrt[3]{3}t^{\frac{4}{3}}+4С
Tenglama standart shaklda.
\frac{9t^{3}c}{9t^{3}}=\frac{\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С}{9t^{3}}
Ikki tarafini 9t^{3} ga bo‘ling.
c=\frac{\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С}{9t^{3}}
9t^{3} ga bo'lish 9t^{3} ga ko'paytirishni bekor qiladi.
c=\frac{4\left(\frac{\left(3t\right)^{\frac{4}{3}}}{3}+С\right)}{9t^{3}}
\frac{4\times \left(3t\right)^{\frac{4}{3}}}{3}+4С ni 9t^{3} ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}