Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(\frac{-e^{xz}+xze^{xz}}{z^{2}}+С_{3}\right)x-\frac{x^{2}e^{xz}}{z}+\frac{2\left(-e^{xz}+xze^{xz}\right)}{z^{3}}
Qisqartirish.
\int \frac{x^{2}}{2}\mathrm{d}x+\int С_{4}\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
\frac{\int x^{2}\mathrm{d}x}{2}+\int С_{4}\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{3}}{6}+\int С_{4}\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring. \frac{1}{2} ni \frac{x^{3}}{3} marotabaga ko'paytirish.
\frac{x^{3}}{6}+С_{4}x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, С_{4} integralini toping.
\left\{\begin{matrix}\left(\frac{-e^{xz}+xze^{xz}}{z^{2}}+С_{3}\right)x-\frac{x^{2}e^{xz}}{z}+\frac{2\left(-e^{xz}+xze^{xz}\right)}{z^{3}}+С_{7},&\\\frac{x^{3}}{6}+С_{4}x+С_{7},&\end{matrix}\right,
Агар F\left(x\right)f\left(x\right) ning dastlabki holati boʻlsa, u holatda f\left(x\right) ning barcha dastlabki holatlari toʻplami F\left(x\right)+C tarafidan belgilanadi. Shu sababli natijaga C\in \mathrm{R} integrallash konstantasini qoʻshing.