Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\int \frac{\left(2x^{2}-x+3\right)x^{3}}{x^{2}}\mathrm{d}x
\frac{3x^{3}-x^{4}+2x^{5}}{x^{2}} ichida hali faktorlanmagan ifodalarni faktorlang.
\int x\left(2x^{2}-x+3\right)\mathrm{d}x
Surat va maxrajdagi ikkala x^{2} ni qisqartiring.
\int 2x^{3}-x^{2}+3x\mathrm{d}x
Ifodani kengaytiring.
\int 2x^{3}\mathrm{d}x+\int -x^{2}\mathrm{d}x+\int 3x\mathrm{d}x
Summani muddatma-muddat integratsiya qiling.
2\int x^{3}\mathrm{d}x-\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x
Har bir shartda konstantani qavsdan tashqariga oling.
\frac{x^{4}}{2}-\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{3}\mathrm{d}x integralni \frac{x^{4}}{4} bilan almashtiring. 2 ni \frac{x^{4}}{4} marotabaga ko'paytirish.
\frac{x^{4}}{2}-\frac{x^{3}}{3}+3\int x\mathrm{d}x
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x^{2}\mathrm{d}x integralni \frac{x^{3}}{3} bilan almashtiring. -1 ni \frac{x^{3}}{3} marotabaga ko'paytirish.
\frac{x^{4}}{2}-\frac{x^{3}}{3}+\frac{3x^{2}}{2}
k\neq -1 uchun integral \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} boʻlgani uchun, \int x\mathrm{d}x integralni \frac{x^{2}}{2} bilan almashtiring. 3 ni \frac{x^{2}}{2} marotabaga ko'paytirish.
\frac{3x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{2}
Qisqartirish.
\frac{3x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{4}}{2}+С
Агар F\left(x\right)f\left(x\right) ning dastlabki holati boʻlsa, u holatda f\left(x\right) ning barcha dastlabki holatlari toʻplami F\left(x\right)+C tarafidan belgilanadi. Shu sababli natijaga C\in \mathrm{R} integrallash konstantasini qoʻshing.