Baholash
\frac{8ax-4x}{\left(a+6\right)a^{2}}+С
x ga nisbatan hosilani topish
\frac{4\left(2a-1\right)}{\left(a+6\right)a^{2}}
Baham ko'rish
Klipbordga nusxa olish
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10}{a+1}+\frac{\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. -a-1 ni \frac{a+1}{a+1} marotabaga ko'paytirish.
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10+\left(-a-1\right)\left(a+1\right)}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
\frac{2a+10}{a+1} va \frac{\left(-a-1\right)\left(a+1\right)}{a+1} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{2a+10-a^{2}-a-a-1}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
2a+10+\left(-a-1\right)\left(a+1\right) ichidagi ko‘paytirishlarni bajaring.
\int \left(\frac{\frac{a^{2}-5a+6}{a^{2}+7a+6}}{\frac{9-a^{2}}{a+1}}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
2a+10-a^{2}-a-a-1 kabi iboralarga o‘xshab birlashtiring.
\int \left(\frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
\frac{a^{2}-5a+6}{a^{2}+7a+6} ni \frac{9-a^{2}}{a+1} ga bo'lish \frac{a^{2}-5a+6}{a^{2}+7a+6} ga k'paytirish \frac{9-a^{2}}{a+1} ga qaytarish.
\int \left(\frac{\left(a-3\right)\left(a-2\right)\left(a+1\right)}{\left(a-3\right)\left(-a-3\right)\left(a+1\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
\frac{\left(a^{2}-5a+6\right)\left(a+1\right)}{\left(a^{2}+7a+6\right)\left(9-a^{2}\right)} ichida hali faktorlanmagan ifodalarni faktorlang.
\int \left(\frac{a-2}{\left(-a-3\right)\left(a+6\right)}+\frac{1}{a+3}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Surat va maxrajdagi ikkala \left(a-3\right)\left(a+1\right) ni qisqartiring.
\int \left(\frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)}+\frac{a+6}{\left(a+3\right)\left(a+6\right)}\right)\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(-a-3\right)\left(a+6\right) va a+3 ning eng kichik umumiy karralisi \left(a+3\right)\left(a+6\right). \frac{a-2}{\left(-a-3\right)\left(a+6\right)} ni \frac{-1}{-1} marotabaga ko'paytirish. \frac{1}{a+3} ni \frac{a+6}{a+6} marotabaga ko'paytirish.
\int \frac{-\left(a-2\right)+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
\frac{-\left(a-2\right)}{\left(a+3\right)\left(a+6\right)} va \frac{a+6}{\left(a+3\right)\left(a+6\right)} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\int \frac{-a+2+a+6}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
-\left(a-2\right)+a+6 ichidagi ko‘paytirishlarni bajaring.
\int \frac{8}{\left(a+3\right)\left(a+6\right)}\times \frac{2a^{2}+5a-3}{2a^{2}}\mathrm{d}x
-a+2+a+6 kabi iboralarga o‘xshab birlashtiring.
\int \frac{8\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)\times 2a^{2}}\mathrm{d}x
Suratni maxrajga va maxrajini suratga ko‘paytirish orqali \frac{8}{\left(a+3\right)\left(a+6\right)} ni \frac{2a^{2}+5a-3}{2a^{2}} ga ko‘paytiring.
\int \frac{4\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}\mathrm{d}x
Surat va maxrajdagi ikkala 2 ni qisqartiring.
\int \frac{4\left(2a-1\right)\left(a+3\right)}{\left(a+3\right)\left(a+6\right)a^{2}}\mathrm{d}x
\frac{4\left(2a^{2}+5a-3\right)}{\left(a+3\right)\left(a+6\right)a^{2}} ichida hali faktorlanmagan ifodalarni faktorlang.
\int \frac{4\left(2a-1\right)}{\left(a+6\right)a^{2}}\mathrm{d}x
Surat va maxrajdagi ikkala a+3 ni qisqartiring.
\int \frac{8a-4}{\left(a+6\right)a^{2}}\mathrm{d}x
4 ga 2a-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\int \frac{8a-4}{a^{3}+6a^{2}}\mathrm{d}x
a+6 ga a^{2} ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{8a-4}{a^{3}+6a^{2}}x
\int a\mathrm{d}x=ax umumiy integrallar qoidasi jadvalidan foydalanib, \frac{8a-4}{a^{3}+6a^{2}} integralini toping.
\frac{\left(8a-4\right)x}{a^{3}+6a^{2}}
Qisqartirish.
\frac{\left(8a-4\right)x}{a^{3}+6a^{2}}+С
Агар F\left(x\right)f\left(x\right) ning dastlabki holati boʻlsa, u holatda f\left(x\right) ning barcha dastlabki holatlari toʻplami F\left(x\right)+C tarafidan belgilanadi. Shu sababli natijaga C\in \mathrm{R} integrallash konstantasini qoʻshing.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}