Asosiy tarkibga oʻtish
γ uchun yechish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\gamma \left(\gamma -2\right)=0
\gamma omili.
\gamma =0 \gamma =2
Tenglamani yechish uchun \gamma =0 va \gamma -2=0 ni yeching.
\gamma ^{2}-2\gamma =0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
\gamma =\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va 0 ni c bilan almashtiring.
\gamma =\frac{-\left(-2\right)±2}{2}
\left(-2\right)^{2} ning kvadrat ildizini chiqarish.
\gamma =\frac{2±2}{2}
-2 ning teskarisi 2 ga teng.
\gamma =\frac{4}{2}
\gamma =\frac{2±2}{2} tenglamasini yeching, bunda ± musbat. 2 ni 2 ga qo'shish.
\gamma =2
4 ni 2 ga bo'lish.
\gamma =\frac{0}{2}
\gamma =\frac{2±2}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 2 ni ayirish.
\gamma =0
0 ni 2 ga bo'lish.
\gamma =2 \gamma =0
Tenglama yechildi.
\gamma ^{2}-2\gamma =0
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\gamma ^{2}-2\gamma +1=1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
\left(\gamma -1\right)^{2}=1
\gamma ^{2}-2\gamma +1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(\gamma -1\right)^{2}}=\sqrt{1}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
\gamma -1=1 \gamma -1=-1
Qisqartirish.
\gamma =2 \gamma =0
1 ni tenglamaning ikkala tarafiga qo'shish.