\gamma ^ { 2 } = \operatorname { arcos } ( \frac { 55 ^ { 2 } + 76 ^ { 2 } + 93812 } { 2 ( 55 ) ( 76 ) }
a uchun yechish (complex solution)
\left\{\begin{matrix}a=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})r}\text{, }&r\neq 0\\a\in \mathrm{C}\text{, }&\gamma =0\text{ and }r=0\end{matrix}\right,
r uchun yechish (complex solution)
\left\{\begin{matrix}r=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})a}\text{, }&a\neq 0\\r\in \mathrm{C}\text{, }&\gamma =0\text{ and }a=0\end{matrix}\right,
a uchun yechish
\left\{\begin{matrix}a=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})r}\text{, }&r\neq 0\\a\in \mathrm{R}\text{, }&\gamma =0\text{ and }r=0\end{matrix}\right,
r uchun yechish
\left\{\begin{matrix}r=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})a}\text{, }&a\neq 0\\r\in \mathrm{R}\text{, }&\gamma =0\text{ and }a=0\end{matrix}\right,
Baham ko'rish
Klipbordga nusxa olish
\gamma ^{2}=ar\cos(\frac{3025+76^{2}+93812}{2\times 55\times 76})
2 daraja ko‘rsatkichini 55 ga hisoblang va 3025 ni qiymatni oling.
\gamma ^{2}=ar\cos(\frac{3025+5776+93812}{2\times 55\times 76})
2 daraja ko‘rsatkichini 76 ga hisoblang va 5776 ni qiymatni oling.
\gamma ^{2}=ar\cos(\frac{8801+93812}{2\times 55\times 76})
8801 olish uchun 3025 va 5776'ni qo'shing.
\gamma ^{2}=ar\cos(\frac{102613}{2\times 55\times 76})
102613 olish uchun 8801 va 93812'ni qo'shing.
\gamma ^{2}=ar\cos(\frac{102613}{110\times 76})
110 hosil qilish uchun 2 va 55 ni ko'paytirish.
\gamma ^{2}=ar\cos(\frac{102613}{8360})
8360 hosil qilish uchun 110 va 76 ni ko'paytirish.
ar\cos(\frac{102613}{8360})=\gamma ^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\cos(\frac{102613}{8360})ra=\gamma ^{2}
Tenglama standart shaklda.
\frac{\cos(\frac{102613}{8360})ra}{\cos(\frac{102613}{8360})r}=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})r}
Ikki tarafini r\cos(\frac{102613}{8360}) ga bo‘ling.
a=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})r}
r\cos(\frac{102613}{8360}) ga bo'lish r\cos(\frac{102613}{8360}) ga ko'paytirishni bekor qiladi.
\gamma ^{2}=ar\cos(\frac{3025+76^{2}+93812}{2\times 55\times 76})
2 daraja ko‘rsatkichini 55 ga hisoblang va 3025 ni qiymatni oling.
\gamma ^{2}=ar\cos(\frac{3025+5776+93812}{2\times 55\times 76})
2 daraja ko‘rsatkichini 76 ga hisoblang va 5776 ni qiymatni oling.
\gamma ^{2}=ar\cos(\frac{8801+93812}{2\times 55\times 76})
8801 olish uchun 3025 va 5776'ni qo'shing.
\gamma ^{2}=ar\cos(\frac{102613}{2\times 55\times 76})
102613 olish uchun 8801 va 93812'ni qo'shing.
\gamma ^{2}=ar\cos(\frac{102613}{110\times 76})
110 hosil qilish uchun 2 va 55 ni ko'paytirish.
\gamma ^{2}=ar\cos(\frac{102613}{8360})
8360 hosil qilish uchun 110 va 76 ni ko'paytirish.
ar\cos(\frac{102613}{8360})=\gamma ^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\cos(\frac{102613}{8360})ar=\gamma ^{2}
Tenglama standart shaklda.
\frac{\cos(\frac{102613}{8360})ar}{\cos(\frac{102613}{8360})a}=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})a}
Ikki tarafini a\cos(\frac{102613}{8360}) ga bo‘ling.
r=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})a}
a\cos(\frac{102613}{8360}) ga bo'lish a\cos(\frac{102613}{8360}) ga ko'paytirishni bekor qiladi.
\gamma ^{2}=ar\cos(\frac{3025+76^{2}+93812}{2\times 55\times 76})
2 daraja ko‘rsatkichini 55 ga hisoblang va 3025 ni qiymatni oling.
\gamma ^{2}=ar\cos(\frac{3025+5776+93812}{2\times 55\times 76})
2 daraja ko‘rsatkichini 76 ga hisoblang va 5776 ni qiymatni oling.
\gamma ^{2}=ar\cos(\frac{8801+93812}{2\times 55\times 76})
8801 olish uchun 3025 va 5776'ni qo'shing.
\gamma ^{2}=ar\cos(\frac{102613}{2\times 55\times 76})
102613 olish uchun 8801 va 93812'ni qo'shing.
\gamma ^{2}=ar\cos(\frac{102613}{110\times 76})
110 hosil qilish uchun 2 va 55 ni ko'paytirish.
\gamma ^{2}=ar\cos(\frac{102613}{8360})
8360 hosil qilish uchun 110 va 76 ni ko'paytirish.
ar\cos(\frac{102613}{8360})=\gamma ^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\cos(\frac{102613}{8360})ra=\gamma ^{2}
Tenglama standart shaklda.
\frac{\cos(\frac{102613}{8360})ra}{\cos(\frac{102613}{8360})r}=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})r}
Ikki tarafini r\cos(\frac{102613}{8360}) ga bo‘ling.
a=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})r}
r\cos(\frac{102613}{8360}) ga bo'lish r\cos(\frac{102613}{8360}) ga ko'paytirishni bekor qiladi.
\gamma ^{2}=ar\cos(\frac{3025+76^{2}+93812}{2\times 55\times 76})
2 daraja ko‘rsatkichini 55 ga hisoblang va 3025 ni qiymatni oling.
\gamma ^{2}=ar\cos(\frac{3025+5776+93812}{2\times 55\times 76})
2 daraja ko‘rsatkichini 76 ga hisoblang va 5776 ni qiymatni oling.
\gamma ^{2}=ar\cos(\frac{8801+93812}{2\times 55\times 76})
8801 olish uchun 3025 va 5776'ni qo'shing.
\gamma ^{2}=ar\cos(\frac{102613}{2\times 55\times 76})
102613 olish uchun 8801 va 93812'ni qo'shing.
\gamma ^{2}=ar\cos(\frac{102613}{110\times 76})
110 hosil qilish uchun 2 va 55 ni ko'paytirish.
\gamma ^{2}=ar\cos(\frac{102613}{8360})
8360 hosil qilish uchun 110 va 76 ni ko'paytirish.
ar\cos(\frac{102613}{8360})=\gamma ^{2}
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
\cos(\frac{102613}{8360})ar=\gamma ^{2}
Tenglama standart shaklda.
\frac{\cos(\frac{102613}{8360})ar}{\cos(\frac{102613}{8360})a}=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})a}
Ikki tarafini a\cos(\frac{102613}{8360}) ga bo‘ling.
r=\frac{\gamma ^{2}}{\cos(\frac{102613}{8360})a}
a\cos(\frac{102613}{8360}) ga bo'lish a\cos(\frac{102613}{8360}) ga ko'paytirishni bekor qiladi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}