Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+\frac{10000}{x})
Surat va maxrajdagi ikkala x ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}x}{x}+\frac{10000}{x})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2x^{2} ni \frac{x}{x} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}x+10000}{x})
\frac{2x^{2}x}{x} va \frac{10000}{x} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{3}+10000}{x})
2x^{2}x+10000 ichidagi ko‘paytirishlarni bajaring.
\left(2x^{3}+10000\right)\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x})+\frac{1}{x}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}+10000)
Har qanday ikki differensial funksiya uchun, ikki funksiya koʻpaytmasining hosilasi birinchi funksiya marotabasi, ikkinchi plyus hosilasi ikkinchi funksiya marotabasi birinchining hosilasidir.
\left(2x^{3}+10000\right)\left(-1\right)x^{-1-1}+\frac{1}{x}\times 3\times 2x^{3-1}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\left(2x^{3}+10000\right)\left(-1\right)x^{-2}+\frac{1}{x}\times 6x^{2}
Qisqartirish.
2x^{3}\left(-1\right)x^{-2}+10000\left(-1\right)x^{-2}+\frac{1}{x}\times 6x^{2}
2x^{3}+10000 ni -x^{-2} marotabaga ko'paytirish.
-2x^{3-2}-10000x^{-2}+6x^{-1+2}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
-2x^{1}-10000x^{-2}+6x^{1}
Qisqartirish.
-2x-10000x^{-2}+6x
Har qanday t sharti uchun t^{1}=t.
\frac{\mathrm{d}}{\mathrm{d}x}(2x^{2}+\frac{10000}{x})
Surat va maxrajdagi ikkala x ni qisqartiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}x}{x}+\frac{10000}{x})
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. 2x^{2} ni \frac{x}{x} marotabaga ko'paytirish.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{2}x+10000}{x})
\frac{2x^{2}x}{x} va \frac{10000}{x} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x^{3}+10000}{x})
2x^{2}x+10000 ichidagi ko‘paytirishlarni bajaring.
\frac{x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(2x^{3}+10000)-\left(2x^{3}+10000\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1})}{\left(x^{1}\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{x^{1}\times 3\times 2x^{3-1}-\left(2x^{3}+10000\right)x^{1-1}}{\left(x^{1}\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{x^{1}\times 6x^{2}-\left(2x^{3}+10000\right)x^{0}}{\left(x^{1}\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{x^{1}\times 6x^{2}-\left(2x^{3}x^{0}+10000x^{0}\right)}{\left(x^{1}\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{6x^{1+2}-\left(2x^{3}+10000x^{0}\right)}{\left(x^{1}\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{6x^{3}-\left(2x^{3}+10000x^{0}\right)}{\left(x^{1}\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{6x^{3}-2x^{3}-10000x^{0}}{\left(x^{1}\right)^{2}}
Keraksiz qavslarni olib tashlash.
\frac{\left(6-2\right)x^{3}-10000x^{0}}{\left(x^{1}\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{4x^{3}-10000x^{0}}{\left(x^{1}\right)^{2}}
6 dan 2 ni ayirish.
\frac{4\left(x^{3}-2500x^{0}\right)}{\left(x^{1}\right)^{2}}
4 omili.
\frac{4\left(x^{3}-2500x^{0}\right)}{1^{2}x^{2}}
Ikki yoki undan ko'p raqam koʻpaytmasini daraja ko'rsatkichiga oshirish uchun har bir raqamni daraja ko'rsatkichiga oshiring va ularning koʻpaytmasini chiqaring.
\frac{4\left(x^{3}-2500x^{0}\right)}{x^{2}}
1 ni 2 daraja ko'rsatgichiga oshirish.
\frac{4\left(x^{3}-2500\times 1\right)}{x^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.
\frac{4\left(x^{3}-2500\right)}{x^{2}}
Har qanday t sharti uchun t\times 1=t va 1t=t.