Asosiy tarkibga oʻtish
Baholash
Tick mark Image
x ga nisbatan hosilani topish
Tick mark Image

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{\left(3x^{2}-2\right)\times 2}{x-5})
\frac{3x^{2}-2}{x-5}\times 2 ni yagona kasrga aylantiring.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{6x^{2}-4}{x-5})
3x^{2}-2 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
\frac{\left(x^{1}-5\right)\frac{\mathrm{d}}{\mathrm{d}x}(6x^{2}-4)-\left(6x^{2}-4\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-5)}{\left(x^{1}-5\right)^{2}}
Har qanday ikki differensial funksiya uchun ikki funksiyaning koeffitsient hosilasi raqamlagichning hosila marotabasi maxraj minusi va barchasi kvadrat maxrajiga bo'lingan.
\frac{\left(x^{1}-5\right)\times 2\times 6x^{2-1}-\left(6x^{2}-4\right)x^{1-1}}{\left(x^{1}-5\right)^{2}}
Polinomialning hosilasi bu uning shartlari hosilasining yig‘indisiga teng. Konstant shartning hosilasi 0. ax^{n} ning hosilasi nax^{n-1}.
\frac{\left(x^{1}-5\right)\times 12x^{1}-\left(6x^{2}-4\right)x^{0}}{\left(x^{1}-5\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{x^{1}\times 12x^{1}-5\times 12x^{1}-\left(6x^{2}x^{0}-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Distributiv xususiyatdan foydalanib kengaytirish.
\frac{12x^{1+1}-5\times 12x^{1}-\left(6x^{2}-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Ayni daraja ko'rsatkichlarini ko'paytirish uchun ularning darajalarini qo'shing.
\frac{12x^{2}-60x^{1}-\left(6x^{2}-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Arifmetik hisobni amalga oshirish.
\frac{12x^{2}-60x^{1}-6x^{2}-\left(-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
Keraksiz qavslarni olib tashlash.
\frac{\left(12-6\right)x^{2}-60x^{1}-\left(-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
O'xshash hadlarni birlashtirish.
\frac{6x^{2}-60x^{1}-\left(-4x^{0}\right)}{\left(x^{1}-5\right)^{2}}
12 dan 6 ni ayirish.
\frac{6x^{2}-60x-\left(-4x^{0}\right)}{\left(x-5\right)^{2}}
Har qanday t sharti uchun t^{1}=t.
\frac{6x^{2}-60x-\left(-4\right)}{\left(x-5\right)^{2}}
Har qanday t sharti uchun (0 bundan mustasno) t^{0}=1.