Baholash
0
Omil
0
Baham ko'rish
Klipbordga nusxa olish
\frac{\left(x-y\right)z}{xyz}+\frac{\left(y-z\right)x}{xyz}-\frac{x-z}{xz}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. xy va yz ning eng kichik umumiy karralisi xyz. \frac{x-y}{xy} ni \frac{z}{z} marotabaga ko'paytirish. \frac{y-z}{yz} ni \frac{x}{x} marotabaga ko'paytirish.
\frac{\left(x-y\right)z+\left(y-z\right)x}{xyz}-\frac{x-z}{xz}
\frac{\left(x-y\right)z}{xyz} va \frac{\left(y-z\right)x}{xyz} da bir xil maxraji bor, ularning suratini qo‘shish orqali qo‘shing.
\frac{xz-yz+yx-zx}{xyz}-\frac{x-z}{xz}
\left(x-y\right)z+\left(y-z\right)x ichidagi ko‘paytirishlarni bajaring.
\frac{-yz+yx}{xyz}-\frac{x-z}{xz}
xz-yz+yx-zx kabi iboralarga o‘xshab birlashtiring.
\frac{y\left(x-z\right)}{xyz}-\frac{x-z}{xz}
\frac{-yz+yx}{xyz} ichida hali faktorlanmagan ifodalarni faktorlang.
\frac{x-z}{xz}-\frac{x-z}{xz}
Surat va maxrajdagi ikkala y ni qisqartiring.
\frac{x-z-\left(x-z\right)}{xz}
\frac{x-z}{xz} va \frac{x-z}{xz} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{x-z-x+z}{xz}
x-z-\left(x-z\right) ichidagi ko‘paytirishlarni bajaring.
\frac{0}{xz}
x-z-x+z kabi iboralarga o‘xshab birlashtiring.
0
Nolni nolga teng bo‘lmagan har qanday songa boʻlsangiz, natija nol chiqadi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}