\frac{ x-4 }{ x+3 } = \frac{ }{ { x }^{ 2 } +5x+6 }
x uchun yechish
x=\sqrt{10}+1\approx 4,16227766
x=1-\sqrt{10}\approx -2,16227766
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+2\right)\left(x-4\right)=1
x qiymati -3,-2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+2\right)\left(x+3\right) ga, x+3,x^{2}+5x+6 ning eng kichik karralisiga ko‘paytiring.
x^{2}-2x-8=1
x+2 ga x-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-2x-8-1=0
Ikkala tarafdan 1 ni ayirish.
x^{2}-2x-9=0
-9 olish uchun -8 dan 1 ni ayirish.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\left(-9\right)}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -2 ni b va -9 ni c bilan almashtiring.
x=\frac{-\left(-2\right)±\sqrt{4-4\left(-9\right)}}{2}
-2 kvadratini chiqarish.
x=\frac{-\left(-2\right)±\sqrt{4+36}}{2}
-4 ni -9 marotabaga ko'paytirish.
x=\frac{-\left(-2\right)±\sqrt{40}}{2}
4 ni 36 ga qo'shish.
x=\frac{-\left(-2\right)±2\sqrt{10}}{2}
40 ning kvadrat ildizini chiqarish.
x=\frac{2±2\sqrt{10}}{2}
-2 ning teskarisi 2 ga teng.
x=\frac{2\sqrt{10}+2}{2}
x=\frac{2±2\sqrt{10}}{2} tenglamasini yeching, bunda ± musbat. 2 ni 2\sqrt{10} ga qo'shish.
x=\sqrt{10}+1
2+2\sqrt{10} ni 2 ga bo'lish.
x=\frac{2-2\sqrt{10}}{2}
x=\frac{2±2\sqrt{10}}{2} tenglamasini yeching, bunda ± manfiy. 2 dan 2\sqrt{10} ni ayirish.
x=1-\sqrt{10}
2-2\sqrt{10} ni 2 ga bo'lish.
x=\sqrt{10}+1 x=1-\sqrt{10}
Tenglama yechildi.
\left(x+2\right)\left(x-4\right)=1
x qiymati -3,-2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+2\right)\left(x+3\right) ga, x+3,x^{2}+5x+6 ning eng kichik karralisiga ko‘paytiring.
x^{2}-2x-8=1
x+2 ga x-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-2x=1+8
8 ni ikki tarafga qo’shing.
x^{2}-2x=9
9 olish uchun 1 va 8'ni qo'shing.
x^{2}-2x+1=9+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=10
9 ni 1 ga qo'shish.
\left(x-1\right)^{2}=10
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{10}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\sqrt{10} x-1=-\sqrt{10}
Qisqartirish.
x=\sqrt{10}+1 x=1-\sqrt{10}
1 ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}