Asosiy tarkibga oʻtish
x uchun yechish (complex solution)
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

\left(x-1\right)\left(x-2\right)=\left(x-5\right)\times 2\times 1
x qiymati 1,5 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-5\right)\left(x-1\right) ga, x-5,x-1 ning eng kichik karralisiga ko‘paytiring.
x^{2}-3x+2=\left(x-5\right)\times 2\times 1
x-1 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-3x+2=\left(x-5\right)\times 2
2 hosil qilish uchun 2 va 1 ni ko'paytirish.
x^{2}-3x+2=2x-10
x-5 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x+2-2x=-10
Ikkala tarafdan 2x ni ayirish.
x^{2}-5x+2=-10
-5x ni olish uchun -3x va -2x ni birlashtirish.
x^{2}-5x+2+10=0
10 ni ikki tarafga qo’shing.
x^{2}-5x+12=0
12 olish uchun 2 va 10'ni qo'shing.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\times 12}}{2}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} 1 ni a, -5 ni b va 12 ni c bilan almashtiring.
x=\frac{-\left(-5\right)±\sqrt{25-4\times 12}}{2}
-5 kvadratini chiqarish.
x=\frac{-\left(-5\right)±\sqrt{25-48}}{2}
-4 ni 12 marotabaga ko'paytirish.
x=\frac{-\left(-5\right)±\sqrt{-23}}{2}
25 ni -48 ga qo'shish.
x=\frac{-\left(-5\right)±\sqrt{23}i}{2}
-23 ning kvadrat ildizini chiqarish.
x=\frac{5±\sqrt{23}i}{2}
-5 ning teskarisi 5 ga teng.
x=\frac{5+\sqrt{23}i}{2}
x=\frac{5±\sqrt{23}i}{2} tenglamasini yeching, bunda ± musbat. 5 ni i\sqrt{23} ga qo'shish.
x=\frac{-\sqrt{23}i+5}{2}
x=\frac{5±\sqrt{23}i}{2} tenglamasini yeching, bunda ± manfiy. 5 dan i\sqrt{23} ni ayirish.
x=\frac{5+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i+5}{2}
Tenglama yechildi.
\left(x-1\right)\left(x-2\right)=\left(x-5\right)\times 2\times 1
x qiymati 1,5 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-5\right)\left(x-1\right) ga, x-5,x-1 ning eng kichik karralisiga ko‘paytiring.
x^{2}-3x+2=\left(x-5\right)\times 2\times 1
x-1 ga x-2 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-3x+2=\left(x-5\right)\times 2
2 hosil qilish uchun 2 va 1 ni ko'paytirish.
x^{2}-3x+2=2x-10
x-5 ga 2 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-3x+2-2x=-10
Ikkala tarafdan 2x ni ayirish.
x^{2}-5x+2=-10
-5x ni olish uchun -3x va -2x ni birlashtirish.
x^{2}-5x=-10-2
Ikkala tarafdan 2 ni ayirish.
x^{2}-5x=-12
-12 olish uchun -10 dan 2 ni ayirish.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=-12+\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=-12+\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
x^{2}-5x+\frac{25}{4}=-\frac{23}{4}
-12 ni \frac{25}{4} ga qo'shish.
\left(x-\frac{5}{2}\right)^{2}=-\frac{23}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{-\frac{23}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{\sqrt{23}i}{2} x-\frac{5}{2}=-\frac{\sqrt{23}i}{2}
Qisqartirish.
x=\frac{5+\sqrt{23}i}{2} x=\frac{-\sqrt{23}i+5}{2}
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.