x uchun yechish
x=5
x=0
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x+4\right)\left(x-1\right)=\left(x+1\right)\left(2x-4\right)
x qiymati -4,-1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+1\right)\left(x+4\right) ga, x+1,x+4 ning eng kichik karralisiga ko‘paytiring.
x^{2}+3x-4=\left(x+1\right)\left(2x-4\right)
x+4 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+3x-4=2x^{2}-2x-4
x+1 ga 2x-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+3x-4-2x^{2}=-2x-4
Ikkala tarafdan 2x^{2} ni ayirish.
-x^{2}+3x-4=-2x-4
-x^{2} ni olish uchun x^{2} va -2x^{2} ni birlashtirish.
-x^{2}+3x-4+2x=-4
2x ni ikki tarafga qo’shing.
-x^{2}+5x-4=-4
5x ni olish uchun 3x va 2x ni birlashtirish.
-x^{2}+5x-4+4=0
4 ni ikki tarafga qo’shing.
-x^{2}+5x=0
0 olish uchun -4 va 4'ni qo'shing.
x=\frac{-5±\sqrt{5^{2}}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 5 ni b va 0 ni c bilan almashtiring.
x=\frac{-5±5}{2\left(-1\right)}
5^{2} ning kvadrat ildizini chiqarish.
x=\frac{-5±5}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{0}{-2}
x=\frac{-5±5}{-2} tenglamasini yeching, bunda ± musbat. -5 ni 5 ga qo'shish.
x=0
0 ni -2 ga bo'lish.
x=-\frac{10}{-2}
x=\frac{-5±5}{-2} tenglamasini yeching, bunda ± manfiy. -5 dan 5 ni ayirish.
x=5
-10 ni -2 ga bo'lish.
x=0 x=5
Tenglama yechildi.
\left(x+4\right)\left(x-1\right)=\left(x+1\right)\left(2x-4\right)
x qiymati -4,-1 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x+1\right)\left(x+4\right) ga, x+1,x+4 ning eng kichik karralisiga ko‘paytiring.
x^{2}+3x-4=\left(x+1\right)\left(2x-4\right)
x+4 ga x-1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+3x-4=2x^{2}-2x-4
x+1 ga 2x-4 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}+3x-4-2x^{2}=-2x-4
Ikkala tarafdan 2x^{2} ni ayirish.
-x^{2}+3x-4=-2x-4
-x^{2} ni olish uchun x^{2} va -2x^{2} ni birlashtirish.
-x^{2}+3x-4+2x=-4
2x ni ikki tarafga qo’shing.
-x^{2}+5x-4=-4
5x ni olish uchun 3x va 2x ni birlashtirish.
-x^{2}+5x=-4+4
4 ni ikki tarafga qo’shing.
-x^{2}+5x=0
0 olish uchun -4 va 4'ni qo'shing.
\frac{-x^{2}+5x}{-1}=\frac{0}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{5}{-1}x=\frac{0}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-5x=\frac{0}{-1}
5 ni -1 ga bo'lish.
x^{2}-5x=0
0 ni -1 ga bo'lish.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=\left(-\frac{5}{2}\right)^{2}
-5 ni bo‘lish, x shartining koeffitsienti, 2 ga -\frac{5}{2} olish uchun. Keyin, -\frac{5}{2} ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-5x+\frac{25}{4}=\frac{25}{4}
Kasrning ham suratini, ham maxrajini kvadratga ko'paytirib -\frac{5}{2} kvadratini chiqarish.
\left(x-\frac{5}{2}\right)^{2}=\frac{25}{4}
x^{2}-5x+\frac{25}{4} omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{25}{4}}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-\frac{5}{2}=\frac{5}{2} x-\frac{5}{2}=-\frac{5}{2}
Qisqartirish.
x=5 x=0
\frac{5}{2} ni tenglamaning ikkala tarafiga qo'shish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}