x uchun yechish
x\geq -\frac{4}{3}
Grafik
Baham ko'rish
Klipbordga nusxa olish
6\left(x+3\right)-12\leq 3\times 3x+10
Tenglamaning ikkala tarafini 12 ga, 2,4,6 ning eng kichik karralisiga ko‘paytiring. 12 musbat bo‘lgani uchun, tengsizlik yo‘nalishi o‘zgarmaydi.
6x+18-12\leq 3\times 3x+10
6 ga x+3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
6x+6\leq 3\times 3x+10
6 olish uchun 18 dan 12 ni ayirish.
6x+6\leq 9x+10
9 hosil qilish uchun 3 va 3 ni ko'paytirish.
6x+6-9x\leq 10
Ikkala tarafdan 9x ni ayirish.
-3x+6\leq 10
-3x ni olish uchun 6x va -9x ni birlashtirish.
-3x\leq 10-6
Ikkala tarafdan 6 ni ayirish.
-3x\leq 4
4 olish uchun 10 dan 6 ni ayirish.
x\geq -\frac{4}{3}
Ikki tarafini -3 ga bo‘ling. -3 manfiy boʻlgani uchun tengsizlikning yo‘nalishi o‘zgaradi.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}