x uchun yechish
x=\frac{1}{2}=0,5
Grafik
Baham ko'rish
Klipbordga nusxa olish
\left(x-2\right)\left(x+2\right)+\left(x+1\right)\times 3=3+\left(x-2\right)\left(x+1\right)
x qiymati -1,2 qiymatlaridan birortasiga teng bo‘lmaydi, chunki nolga bo‘lish mumkin emas. Tenglamaning ikkala tarafini \left(x-2\right)\left(x+1\right) ga, x+1,x-2,x^{2}-x-2 ning eng kichik karralisiga ko‘paytiring.
x^{2}-4+\left(x+1\right)\times 3=3+\left(x-2\right)\left(x+1\right)
Hisoblang: \left(x-2\right)\left(x+2\right). Ko‘paytirish qoida yordamida turli kvadratlarga aylantirilishi mumkin: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. 2 kvadratini chiqarish.
x^{2}-4+3x+3=3+\left(x-2\right)\left(x+1\right)
x+1 ga 3 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
x^{2}-1+3x=3+\left(x-2\right)\left(x+1\right)
-1 olish uchun -4 va 3'ni qo'shing.
x^{2}-1+3x=3+x^{2}-x-2
x-2 ga x+1 ni ko‘paytirish orqali distributiv xususiyatdan foydalaning va ifoda sifatida birlashtiring.
x^{2}-1+3x=1+x^{2}-x
1 olish uchun 3 dan 2 ni ayirish.
x^{2}-1+3x-x^{2}=1-x
Ikkala tarafdan x^{2} ni ayirish.
-1+3x=1-x
0 ni olish uchun x^{2} va -x^{2} ni birlashtirish.
-1+3x+x=1
x ni ikki tarafga qo’shing.
-1+4x=1
4x ni olish uchun 3x va x ni birlashtirish.
4x=1+1
1 ni ikki tarafga qo’shing.
4x=2
2 olish uchun 1 va 1'ni qo'shing.
x=\frac{2}{4}
Ikki tarafini 4 ga bo‘ling.
x=\frac{1}{2}
\frac{2}{4} ulushini 2 ni chiqarib, bekor qilish hisobiga eng past shartlarga kamaytiring.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}