x uchun yechish
x=-y^{2}
y\neq 1\text{ and }y\neq 0
y uchun yechish (complex solution)
\left\{\begin{matrix}y=i\sqrt{x}\text{, }&x\neq 0\\y=-i\sqrt{x}\text{, }&x\neq -1\text{ and }x\neq 0\end{matrix}\right,
y uchun yechish
\left\{\begin{matrix}y=-\sqrt{-x}\text{, }&x<0\\y=\sqrt{-x}\text{, }&x\neq -1\text{ and }x<0\end{matrix}\right,
Grafik
Baham ko'rish
Klipbordga nusxa olish
y\left(x+1\right)=\left(y-1\right)x+y\left(y-1\right)\left(-1\right)
Tenglamaning ikkala tarafini y\left(y-1\right) ga, y-1,y ning eng kichik karralisiga ko‘paytiring.
yx+y=\left(y-1\right)x+y\left(y-1\right)\left(-1\right)
y ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
yx+y=yx-x+y\left(y-1\right)\left(-1\right)
y-1 ga x ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
yx+y=yx-x+\left(y^{2}-y\right)\left(-1\right)
y ga y-1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
yx+y=yx-x-y^{2}+y
y^{2}-y ga -1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
yx+y-yx=-x-y^{2}+y
Ikkala tarafdan yx ni ayirish.
y=-x-y^{2}+y
0 ni olish uchun yx va -yx ni birlashtirish.
-x-y^{2}+y=y
Tomonlarni almashtirib, barcha oʻzgaruvchi shartlar chap tomonga oʻtkazing.
-x+y=y+y^{2}
y^{2} ni ikki tarafga qo’shing.
-x=y+y^{2}-y
Ikkala tarafdan y ni ayirish.
-x=y^{2}
0 ni olish uchun y va -y ni birlashtirish.
\frac{-x}{-1}=\frac{y^{2}}{-1}
Ikki tarafini -1 ga bo‘ling.
x=\frac{y^{2}}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x=-y^{2}
y^{2} ni -1 ga bo'lish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}