Asosiy tarkibga oʻtish
x uchun yechish
Tick mark Image
Grafik

Veb-qidiruvdagi o'xshash muammolar

Baham ko'rish

2\left(x+1\right)+2\left(x^{2}+1\right)\left(-\frac{1}{2}\right)=0
Tenglamaning ikkala tarafini 2\left(x^{2}+1\right) ga, x^{2}+1,2 ning eng kichik karralisiga ko‘paytiring.
2x+2+2\left(x^{2}+1\right)\left(-\frac{1}{2}\right)=0
2 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x+2-\left(x^{2}+1\right)=0
-1 hosil qilish uchun 2 va -\frac{1}{2} ni ko'paytirish.
2x+2-x^{2}-1=0
x^{2}+1 teskarisini topish uchun har birining teskarisini toping.
2x+1-x^{2}=0
1 olish uchun 2 dan 1 ni ayirish.
-x^{2}+2x+1=0
ax^{2}+bx+c=0 shaklidagi barcha tenglamalarni kvadrat formulasi bilan yechish mumkin: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Kvadrat formula ikki yechmni taqdim qiladi, biri ± qo'shish bo'lganda, va ikkinchisi ayiruv bo'lganda.
x=\frac{-2±\sqrt{2^{2}-4\left(-1\right)}}{2\left(-1\right)}
Ushbu tenglama standart shaklidadir: ax^{2}+bx+c=0. Kvadrat tenglama formulasida, \frac{-b±\sqrt{b^{2}-4ac}}{2a} -1 ni a, 2 ni b va 1 ni c bilan almashtiring.
x=\frac{-2±\sqrt{4-4\left(-1\right)}}{2\left(-1\right)}
2 kvadratini chiqarish.
x=\frac{-2±\sqrt{4+4}}{2\left(-1\right)}
-4 ni -1 marotabaga ko'paytirish.
x=\frac{-2±\sqrt{8}}{2\left(-1\right)}
4 ni 4 ga qo'shish.
x=\frac{-2±2\sqrt{2}}{2\left(-1\right)}
8 ning kvadrat ildizini chiqarish.
x=\frac{-2±2\sqrt{2}}{-2}
2 ni -1 marotabaga ko'paytirish.
x=\frac{2\sqrt{2}-2}{-2}
x=\frac{-2±2\sqrt{2}}{-2} tenglamasini yeching, bunda ± musbat. -2 ni 2\sqrt{2} ga qo'shish.
x=1-\sqrt{2}
-2+2\sqrt{2} ni -2 ga bo'lish.
x=\frac{-2\sqrt{2}-2}{-2}
x=\frac{-2±2\sqrt{2}}{-2} tenglamasini yeching, bunda ± manfiy. -2 dan 2\sqrt{2} ni ayirish.
x=\sqrt{2}+1
-2-2\sqrt{2} ni -2 ga bo'lish.
x=1-\sqrt{2} x=\sqrt{2}+1
Tenglama yechildi.
2\left(x+1\right)+2\left(x^{2}+1\right)\left(-\frac{1}{2}\right)=0
Tenglamaning ikkala tarafini 2\left(x^{2}+1\right) ga, x^{2}+1,2 ning eng kichik karralisiga ko‘paytiring.
2x+2+2\left(x^{2}+1\right)\left(-\frac{1}{2}\right)=0
2 ga x+1 ni ko'paytirish orqali distributiv xususiyatdan foydalanish.
2x+2-\left(x^{2}+1\right)=0
-1 hosil qilish uchun 2 va -\frac{1}{2} ni ko'paytirish.
2x+2-x^{2}-1=0
x^{2}+1 teskarisini topish uchun har birining teskarisini toping.
2x+1-x^{2}=0
1 olish uchun 2 dan 1 ni ayirish.
2x-x^{2}=-1
Ikkala tarafdan 1 ni ayirish. Har qanday sonni noldan ayirsangiz, o‘zining manfiyi chiqadi.
-x^{2}+2x=-1
Bu kabi kvadrat tenglamalarni kvadratni yakunlab yechish mumkin. Kvadratni yechish uchun tenglama avval ushbu shaklda bo'lishi shart: x^{2}+bx=c.
\frac{-x^{2}+2x}{-1}=-\frac{1}{-1}
Ikki tarafini -1 ga bo‘ling.
x^{2}+\frac{2}{-1}x=-\frac{1}{-1}
-1 ga bo'lish -1 ga ko'paytirishni bekor qiladi.
x^{2}-2x=-\frac{1}{-1}
2 ni -1 ga bo'lish.
x^{2}-2x=1
-1 ni -1 ga bo'lish.
x^{2}-2x+1=1+1
-2 ni bo‘lish, x shartining koeffitsienti, 2 ga -1 olish uchun. Keyin, -1 ning kvadratini tenglamaning ikkala tarafiga qo‘shing. Ushbu qadam tenglamaning chap qismini mukammal kvadrat sifatida hosil qiladi.
x^{2}-2x+1=2
1 ni 1 ga qo'shish.
\left(x-1\right)^{2}=2
x^{2}-2x+1 omili. Odatda, x^{2}+bx+c mukammal kvadrat bo'lsa, u doimo \left(x+\frac{b}{2}\right)^{2} omil sifatida bo'lishi mumkin.
\sqrt{\left(x-1\right)^{2}}=\sqrt{2}
Tenglamaning ikkala tarafining kvadrat ildizini chiqarish.
x-1=\sqrt{2} x-1=-\sqrt{2}
Qisqartirish.
x=\sqrt{2}+1 x=1-\sqrt{2}
1 ni tenglamaning ikkala tarafiga qo'shish.