Baholash
\frac{2\left(y-x\right)}{\left(1-y\right)\left(x-1\right)}
Kengaytirish
-\frac{2\left(y-x\right)}{\left(x-1\right)\left(y-1\right)}
Baham ko'rish
Klipbordga nusxa olish
\frac{-\left(x\left(y-1\right)+y\left(1-x\right)\right)}{\left(x-1\right)\left(y-1\right)}-\frac{y-x}{\left(x-1\right)\left(y-1\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-1\right)\left(1-y\right) va \left(x-1\right)\left(y-1\right) ning eng kichik umumiy karralisi \left(x-1\right)\left(y-1\right). \frac{x\left(y-1\right)+y\left(1-x\right)}{\left(x-1\right)\left(1-y\right)} ni \frac{-1}{-1} marotabaga ko'paytirish.
\frac{-\left(x\left(y-1\right)+y\left(1-x\right)\right)-\left(y-x\right)}{\left(x-1\right)\left(y-1\right)}
\frac{-\left(x\left(y-1\right)+y\left(1-x\right)\right)}{\left(x-1\right)\left(y-1\right)} va \frac{y-x}{\left(x-1\right)\left(y-1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{-yx+x-y+yx-y+x}{\left(x-1\right)\left(y-1\right)}
-\left(x\left(y-1\right)+y\left(1-x\right)\right)-\left(y-x\right) ichidagi ko‘paytirishlarni bajaring.
\frac{2x-2y}{\left(x-1\right)\left(y-1\right)}
-yx+x-y+yx-y+x kabi iboralarga o‘xshab birlashtiring.
\frac{2x-2y}{xy-x-y+1}
\left(x-1\right)\left(y-1\right) ni kengaytirish.
\frac{-\left(x\left(y-1\right)+y\left(1-x\right)\right)}{\left(x-1\right)\left(y-1\right)}-\frac{y-x}{\left(x-1\right)\left(y-1\right)}
Ifodalarni qo‘shish yoki ayirish uchun ularni yoyib, maxrajlarini bir xil qiling. \left(x-1\right)\left(1-y\right) va \left(x-1\right)\left(y-1\right) ning eng kichik umumiy karralisi \left(x-1\right)\left(y-1\right). \frac{x\left(y-1\right)+y\left(1-x\right)}{\left(x-1\right)\left(1-y\right)} ni \frac{-1}{-1} marotabaga ko'paytirish.
\frac{-\left(x\left(y-1\right)+y\left(1-x\right)\right)-\left(y-x\right)}{\left(x-1\right)\left(y-1\right)}
\frac{-\left(x\left(y-1\right)+y\left(1-x\right)\right)}{\left(x-1\right)\left(y-1\right)} va \frac{y-x}{\left(x-1\right)\left(y-1\right)} da bir xil maxraji bor, ularning suratini ayirish orqali ayiring.
\frac{-yx+x-y+yx-y+x}{\left(x-1\right)\left(y-1\right)}
-\left(x\left(y-1\right)+y\left(1-x\right)\right)-\left(y-x\right) ichidagi ko‘paytirishlarni bajaring.
\frac{2x-2y}{\left(x-1\right)\left(y-1\right)}
-yx+x-y+yx-y+x kabi iboralarga o‘xshab birlashtiring.
\frac{2x-2y}{xy-x-y+1}
\left(x-1\right)\left(y-1\right) ni kengaytirish.
Misollar
Ikkilik tenglama
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometriya
4 \sin \theta \cos \theta = 2 \sin \theta
Chiziqli tenglama
y = 3x + 4
Arifmetik
699 * 533
Matritsa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simli tenglama
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differensatsiya
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Oʻngga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Chegaralar
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}